#' @title Second order conditional composite likelihood function
#' @description Second order conditional composite likelihood function.
#' @param psi Current value of alpha
#' @param xis Current value of xi (log transformed)
#' @param sigmas Current value of sigma^2 (log transformed)
#' @param phis Current value of phi (log transformed)
#' @param fi exp(beta^T z(u))
#' @param fj exp(beta^T z(v))
#' @param R distance
#' @param mi mark of u
#' @param mj mark of v
#' @param mval all marks
#' @param stz indicator
#' @return likelihood
#' @export
second_order_likelihood <- function(psi,xis,sigmas,phis,R,fi,fj,mi,mj,mval,stz=F){
p = length(mval)
if(stz==T){
B=rbind(diag(p-1),rep(-1,p-1))
alphas=B%*%psi
}
else{
alphas=psi
}
q=dim(alphas)[2]
if(!is.matrix(alphas)){alphas=matrix(alphas,nrow=p)}
nR=length(R)
Ptmp <- matrix(NA,nR,p^2)
ptmp <- numeric(nR)
k0 = 0
for(k1 in 1:p){
for(k2 in 1:p){
k0 = k0 +1
ind = (mi==mval[k1])&(mj==mval[k2])
tmp1 <- 0
for(l in 1:q){tmp1 <- tmp1+alphas[k1,l]*alphas[k2,l]*exp(-R/exp(xis[l]))}
if(k1==k2){Ptmp[,k0] <- fi[,k1]*fj[,k2]*exp(tmp1+exp(sigmas[k1])*exp(-R/exp(phis[k1])))}
else{Ptmp[,k0] <- fi[,k1]*fj[,k2]*exp(tmp1)}
ptmp[ind] = Ptmp[ind,k0]
}
}
fval = ptmp/rowSums(Ptmp)
fval = sum(log(fval))
-fval
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.