model_rnn | R Documentation |
New features will be added in near future, e.g. categorical feature handling and so on.
model_rnn( rnn_layer = nn_gru, input_size, output_size, hidden_size, horizon = 1, embedding = NULL, initial_layer = nn_nonlinear, last_timesteps = 1, final_layer = nn_linear, dropout = 0, batch_first = TRUE )
rnn_layer |
( |
input_size |
( |
output_size |
( |
hidden_size |
( |
horizon |
( |
embedding |
( |
initial_layer |
( |
final_layer |
( |
dropout |
( |
batch_first |
( |
library(dplyr, warn.conflicts = FALSE) library(torch) library(torchts) # Preparing data weather_data <- weather_pl %>% filter(station == "TRN") %>% select(date, tmax_daily, rr_type) %>% mutate(rr_type = ifelse(is.na(rr_type), "NA", rr_type)) weather_dl <- weather_data %>% as_ts_dataloader( tmax_daily ~ date + tmax_daily + rr_type, timesteps = 30, categorical = "rr_type", batch_size = 32 ) unique(weather_data$rr_type) n_unique_values <- n_distinct(weather_data$rr_type) .embedding_spec <- embedding_spec( num_embeddings = n_unique_values, embedding_dim = embedding_size_google(n_unique_values) ) input_size <- 1 + embedding_size_google(n_unique_values) # tmax_daily + rr_type embedding # Creating a model rnn_net <- model_rnn( input_size = input_size, output_size = 2, hidden_size = 10, horizon = 10, embedding = .embedding_spec ) print(rnn_net) # Prediction example on non-trained neural network batch <- dataloader_next(dataloader_make_iter(weather_dl)) # debugonce(rnn_net$forward) rnn_net(batch$x_num, batch$x_cat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.