nn_multi_embedding | R Documentation |
It is especially useful, for dealing with multiple categorical features.
nn_multi_embedding( num_embeddings, embedding_dim, padding_idx = NULL, max_norm = NULL, norm_type = 2, scale_grad_by_freq = FALSE, sparse = FALSE, .weight = NULL )
num_embeddings |
( |
embedding_dim |
( |
padding_idx |
( |
max_norm |
( |
norm_type |
( |
scale_grad_by_freq |
( |
sparse |
( |
.weight |
( |
library(recipes) data("gss_cat", package = "forcats") gss_cat_transformed <- recipe(gss_cat) %>% step_integer(everything()) %>% prep() %>% juice() gss_cat_transformed <- na.omit(gss_cat_transformed) gss_cat_transformed <- gss_cat_transformed %>% mutate(across(where(is.numeric), as.integer)) glimpse(gss_cat_transformed) gss_cat_tensor <- as_tensor(gss_cat_transformed) .dict_size <- dict_size(gss_cat_transformed) .dict_size .embedding_size <- embedding_size_google(.dict_size) embedding_module <- nn_multi_embedding(.dict_size, .embedding_size) # Expected output size sum(.embedding_size) embedding_module(gss_cat_tensor)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.