torchts_mlp | R Documentation |
MLP model for time series forecasting
torchts_mlp( formula, data, learn_rate = 0.001, hidden_units, dropout = FALSE, timesteps = 20, horizon = 1, jump = horizon, optim = optim_adam(), validation = NULL, stateful = FALSE, batch_size = 1, epochs = 10, shuffle = TRUE, scale = TRUE, sample_frac = 1, loss_fn = nn_mse_loss(), device = NULL )
formula |
( |
data |
( |
learn_rate |
( |
hidden_units |
( |
timesteps |
( |
horizon |
( |
jump |
( |
optim |
( |
validation |
( |
batch_size |
( |
epochs |
( |
shuffle |
( |
scale |
( |
sample_frac |
( |
loss_fn |
( |
device |
( |
library(dplyr, warn.conflicts = FALSE) library(torch) library(torchts) library(timetk) # Preparing a dataset tiny_m5_sample <- tiny_m5 %>% filter(item_id == "FOODS_3_586", store_id == "CA_1") %>% mutate(value = as.numeric(value)) tk_summary_diagnostics(tiny_m5_sample) glimpse(tiny_m5_sample) TIMESTEPS <- 20 data_split <- time_series_split( tiny_m5_sample, date, initial = "4 years", assess = "1 year", lag = TIMESTEPS ) # Training mlp_model <- torchts_mlp( value ~ date + value + sell_price + wday, data = training(data_split), hidden_units = 10, timesteps = TIMESTEPS, horizon = 1, epochs = 10, batch_size = 32 ) # Prediction cleared_new_data <- testing(data_split) %>% clear_outcome(date, value, TIMESTEPS) forecast <- mlp_model %>% predict(cleared_new_data)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.