# /Library/Frameworks/R.framework/Resources/Rscript -e "source('notebooks/poland.R')"
### Steps to replicate hexagons (takes a while to run):
library("hexscape")
## 1) Set path to folder with raw spatial data and intermediate objects:
set_storage_folder("~/Documents/Resources/Datasets/hexscape")
# then put clc_legend.csv and u2018_clc2018_v2020_20u1_geoPackage into the raw_data folder
## 2) Process and cache corine data:
# Downloads and caches high res map:
map <- extract_map("PL")
# Processes raw corine data and saves processed_data/corine_XX.rds
land_use <- extract_corine("PL", verbose=2L)
# Note: the second time these are run they load cached data
## 3) Group and summarise corine data
clc <- extract_clc() %>%
mutate(Category = case_when(
CLC_LABEL2 == "Urban fabric" ~ "Impassable",
CLC_LABEL3 == "Industrial or commercial units" ~ "Impassable",
CLC_LABEL1 == "Artificial surfaces" ~ "Passable",
CLC_CODE %in% c("243", "324", "322", "411", "421", "412", "321", "222") ~ "Medium",
CLC_LABEL1 == "Water bodies" ~ "Passable",
CLC_LABEL2 == "Open spaces with little or no vegetation" ~ "Passable",
CLC_CODE %in% c("243","244") ~ "High",
CLC_LABEL1 == "Agricultural areas" ~ "Low",
CLC_LABEL2 == "Forests" ~ "High",
CLC_LABEL3 == "Transitional woodland-shrub" ~ "High",
CLC_LABEL2 == "Scrub and/or herbaceous vegetation associations" ~ "Low",
CLC_LABEL1 == "Wetlands" ~ "Low",
CLC_LABEL1 == "Unknown" ~ "Passable",
TRUE ~ NA_character_
)) %>%
mutate(Category = ordered(Category, levels=c("Impassable","Passable","Low","Medium","High"))) %>%
arrange(Category, CLC_CODE)
stopifnot(all(!is.na(clc$Category)))
land_use_processed <- land_use %>%
left_join(clc %>% select(CLC_CODE, Category), by="CLC_CODE") %>%
filter(CLC_LABEL1 != "Unknown") %>%
group_by(Category) %>%
summarise(AREA_HA = sum(AREA_HA), Shape = sf::st_union(Shape), .groups="drop")
# Simplify land use boundaries for computational reasons:
land_use_processed <- land_use_processed %>%
rmapshaper::ms_simplify(keep=0.25, keep_shapes=TRUE, explode=TRUE, method="dp")
## 3) Generate hexagon patches from this map:
patches <- generate_patches(map, hex_width=2000, land_use=land_use_processed)
## 4) Generate neighbours:
neighbours <- generate_neighbours(patches, calculate_border=TRUE)
save(patches, neighbours, map, file="patches/patches_poland.rda")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.