# hadasch.lettuce.R
See also
# ----------------------------------------------------------------------------
libs(tidyverse)
setwd("c:/one/stat papers/genomic selection/Schmidt 2019" )
dat <- rio::import("hadasch.lettuce.txt") %>%
rename(dmr=y)
datm <- rio::import("hadasch.lettuce.markers.txt")
dim(datm) # 89 301
head(datm)
## gen x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
## 1 G1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1
## 2 G2 1 1 0 1 1 -1 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1
## 3 G3 -1 -1 0 -1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1
## 4 G4 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1
## 5 G5 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
## 6 G6 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
hadasch.lettuce <- dat
hadasch.lettuce.markers <- datm
kw::agex(hadasch.lettuce)
write.table(hadasch.lettuce.markers, file="c:/x/rpack/agridat/data/hadasch.lettuce.markers.txt", sep="\t", row.names=FALSE)
# ----------------------------------------------------------------------------
libs(lattice)
dat <- hadasch.lettuce
datm <- hadasch.lettuce.markers
dotplot(dmr ~ factor(gen)|factor(loc), dat,
group=rep, layout=c(1,3),
main="hadasch.lettuce")
# y = loc + gen + gen:loc + block:loc + error
libs(asreml)
dat <- transform(dat, loc=factor(loc), gen=factor(gen), rep=factor(rep))
m1 <- asreml(dmr ~ 1 + gen, data=dat,
random = ~ loc + gen:loc + rep%in%loc)
p1 <- predict(m1, classify="gen")$pvals
libs(sommer)
m2 <- mmer(dmr ~ 0 + gen, data=dat,
random = ~ loc + gen:loc + rep%in%loc)
p2 <- coef(m2)
head(p1)
head(p2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.