# --------------------------------------------------
# extra code bits
# --------------------------------------------------
# segmentation analysis ----------------------------
# my_glm <- glm(inc ~ date, data = osiris1)
# my_coef <- coef(my_glm)
#
# p1 <- p + geom_abline(
# intercept = my_coef[1],
# slope = my_coef[2]
# )
# p1
#
# # now for the actual breakpoint analysis
# my_seg <- segmented(my_glm,
# seg.Z = ~date,
# psi = list(date = c(
# as.Date("2021-03-07"),
# as.Date("2021-03-21"),
# as.Date("2021-04-01"),
# as.Date("2021-04-17")
# ))
# )
# summary(my_seg)
# # the breakpoints
# my_seg$psi
#
# # the slopes
# my_slopes <- slope(my_seg)
# # beta_mult <- (my_slopes$date[,1]/my_slopes$date[1,1])
#
# # get the fitted data
# my_fitted <- fitted(my_seg)
# my_model <- data.frame(Date = osiris1$date, Daily_Cases = my_fitted)
# p + geom_line(data = my_model, aes(x = Date, y = Daily_Cases), color = "blue")
# --------------------------------------------------
# Sangeeta's code from hermione
# log_likelihood <- function(t, inf_params, ip_params, fun, ...) {
# log(fun(t, inf_params, ip_params, ...))
# }
#
# out <- mapply(
# FUN = log_likelihood,
# t = tvec,
# offset = offset_vec,
# MoreArgs = list(
# inf_params = inf_params,
# ip_params = ip_params,
# fun = probability_offset
# ),
# SIMPLIFY = TRUE
# )
# ---------------------------------------------------
# by hand likelihood approach - grid search
# --------------------------------------------------
# my_grid <- expand.grid(
# beta = seq(0.00001, 0.001, by = 0.00001),
# alpha = seq(0, 1, by = 0.01)
# )
#
# out <- apply(my_grid, 1, likelihood_func,
# # other args for likelihood_fun
# t = seq(0, breakpoints[1], by = 1),
# data = osiris1,
# params = params,
# init = init
# )
#
# out <- mapply(
# FUN = likelihood_func,
# beta = as.list(seq(0.00001, 0.001, by = 0.00001)),
# alpha = as.list(seq(0, 1, by = 0.01)),
# t = list(seq(0, breakpoints[1], by = 1)),
# MoreArgs = list(
# data = osiris1,
# params = params,
# init = init
# ) # ,
# # SIMPLIFY = TRUE
# )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.