# # utility script for trajectory analysis as in Lehallier et al 2019, Nature medicine
#
# rm(list=ls())
#
# require("DEswan")
# # devtools::install_github("lehallib/DEswan",build_vignettes = T)
#
# data=DEswan::agingplasmaproteome[,-c(1:3)]
# dataSupp=DEswan::agingplasmaproteome[,c(1:3)]
#
# plx.tot=NULL
# x=dataSupp$Age
# i=1
#
# plx.tot=NULL
# for(i in 1:ncol(data)){
# y=as.vector(scale(data[,i]))
# xy=data.frame(na.omit(cbind(x=x,y=y)))
# xy=xy[order(xy$x),]
# plx<-predict(loess(xy$y~xy$x),newdata = min(x):max(x), se=T)
# plx.tot=rbind(plx.tot,plx$fit)
# print(i)
# }
#
# colnames(plx.tot)<-paste("X_",min(x):max(x),sep="")
# rownames(plx.tot)<-colnames(data)
# head(plx.tot)
#
#
# require(gplots)
# pairs.breaks <- seq(-1, 1, by=0.01)
# mycol <- colorpanel(n=length(pairs.breaks)-1,low="deepskyblue",mid="black",high="yellow")
# require(gplots)
# toHeatmap=plx.tot
#
#
# # modify margins plot
# par(oma=c(1.1, # bottom
# 2.1, # left
# 2.1, # top
# 5.1)) # right
#
# hm=(heatmap.2(as.matrix(toHeatmap),
# cexRow=.01,cexCol=1,
# trace="none",
# dendrogram="both",
# breaks=pairs.breaks,
# col=mycol,
# Rowv=T,key=F,
# Colv=F,
# lhei=c(0.2,10),
# lwid=c(.2,3)
# ))
#
#
#
#
#
#
# # make clustering and generate files for different cutoffs
# hc=hclust(dist(as.matrix(plx.tot)))
#
#
# hc.list=list()
# jjj=5
# for(jjj in c(2:20)){
# x.ct=mean(c(sort(hc$height,decreasing = T)[jjj-1],sort(hc$height,decreasing = T)[jjj]))
# ct=cutree(hc, h = x.ct)
# hc.list[[jjj]]<-ct
# }
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.