#' @title Plot pcurve
#' @description
#' Using the R package meta to calculate a random effects meta-analysis based on estimates (e.g. log hazard ratios) and their standard errors. Afterwards using dmetar package to create a pcurve plot.
#' @param yi
#' A \code{string} of the variable which holds the vector of length k with the observed effect sizes or outcomes in the selected dataset (d)
#' @param vi
#' A \code{string} of the variable which holds the vector of length k with the corresponding sampling variances in the selected dataset (d)
#' @param d
#' A \code{string} representing the dataset name that should be used for fitting.
#' @param measure
#' A character string indicating underlying summary measure
#' @return returns a pcurve plot
#' @author Robert Studtrucker
#' @export
pcurves<-function(yi,vi,measure,d) {
requireNamespace("dmetar")
requireNamespace("meta")
dat <- d
checkParameter(dat,c(yi,vi))
#Filter peer reviewed articles
dat<-dat[dat$r_peer=="yes",]
# meta-Model
overall.meta <- meta::metagen(TE=dat[,yi], seTE=sqrt(dat[,vi]),data = dat, studlab = paste(r_author),
comb.fixed = FALSE,comb.random = TRUE,method.tau = "SJ",
hakn = TRUE,prediction = TRUE,sm = measure)
# p-curve
dmetar::pcurve(overall.meta)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.