library(magrittr)
library(unittest)
library(gadget3)
table_string <- function (str) {
read.table(
textConnection(str),
blank.lines.skip = TRUE,
header = TRUE,
stringsAsFactors = FALSE)
}
ok_group('g3a_likelihood_tagging_ckmr', {
year_range <- 1982:1990
ling_imm <- g3_stock('ling_imm', seq(20, 156, 4)) %>%
g3s_livesonareas(c(1)) %>%
g3s_age(3, 10)
ling_mat <- g3_stock('ling_mat', seq(20, 156, 4)) %>%
g3s_livesonareas(c(1)) %>%
g3s_age(5, 15)
fleet_ckmr <- g3_fleet('fleet_ckmr') %>% g3s_livesonareas(c(1))
igfs <- g3_fleet('igfs') %>% g3s_livesonareas(c(1))
imm_report <- g3s_clone(ling_imm, 'imm_report') %>% g3s_time(year = local(year_range), step = 1:4)
mat_report <- g3s_clone(ling_mat, 'mat_report') %>% g3s_time(year = local(year_range), step = 1:4)
ling_imm_actions <- list(
g3a_initialconditions_normalparam(ling_imm,
factor_f = ~age * g3_param("lingimm.init") * g3_param("lingimm.init.scalar"),
mean_f = ~g3_param("ling.Linf"),
stddev_f = ~10,
alpha_f = ~g3_param("lingimm.walpha"),
beta_f = ~g3_param("lingimm.wbeta")),
g3a_naturalmortality(ling_imm, g3a_naturalmortality_exp(~g3_param("lingimm.M"))),
g3a_age(ling_imm),
list())
ling_mat_actions <- list(
g3a_initialconditions_normalparam(ling_mat,
factor_f = ~age * g3_param("lingmat.init") * g3_param("lingmat.init.scalar"),
mean_f = ~g3_param("ling.Linf"),
stddev_f = ~10,
alpha_f = ~g3_param("lingmat.walpha"),
beta_f = ~g3_param("lingmat.wbeta")),
g3a_naturalmortality(ling_mat, g3a_naturalmortality_exp(~g3_param("lingmat.M"))),
g3a_age(ling_mat),
g3a_spawn(
ling_mat,
recruitment_f = g3a_spawn_recruitment_ricker(
~g3_param("ricker.mu"),
~g3_param("ricker.lambda")),
output_stocks = list(ling_imm),
mean_f = 50,
stddev_f = 10,
alpha_f = ~g3_param("lingmat.walpha"),
beta_f = ~g3_param("lingmat.wbeta"),
run_f = ~cur_step==1),
list())
fleet_actions <- list(
g3a_predate_totalfleet(
fleet_ckmr,
list(ling_imm, ling_mat),
suitabilities = list(
ling_imm = g3_suitability_exponentiall50(alpha = 1, l50 = 80),
ling_mat = g3_suitability_exponentiall50(alpha = 1, l50 = 80)),
amount_f = 1000),
list())
likelihood_actions <- list(
g3l_tagging_ckmr(
'tagging_ckmr',
table_string('
year parent_age offspring_age mo_pairs
1989 5 3 1
1990 10 4 2
'),
fleets = list(fleet_ckmr),
parent_stocks = list(ling_mat),
offspring_stocks = list(ling_imm)),
list())
time_actions <- list(
g3a_time(min(year_range), max(year_range), c(3,3,3,3), project_years = 0),
list())
actions <- c(
ling_imm_actions,
ling_mat_actions,
fleet_actions,
likelihood_actions,
time_actions)
# Compile model
actions <- c(actions, list(
g3a_report_history(actions, var_re = "tagging_ckmrmodel_(spawning|spawned|total|catch)$|__cons$|__suit$", out_prefix = "hist") ))
model_fn <- g3_to_r(actions, trace = FALSE)
# model_fn <- edit(model_fn)
if (nzchar(Sys.getenv('G3_TEST_TMB'))) {
model_cpp <- g3_to_tmb(actions, trace = FALSE)
# model_cpp <- edit(model_cpp)
model_tmb <- g3_tmb_adfun(model_cpp, compile_flags = c("-O0", "-g"))
} else {
writeLines("# skip: not compiling TMB model")
model_cpp <- c()
}
params <- attr(model_fn, 'parameter_template')
params$lingimm.init <- 1
params$lingimm.init.scalar <- 100
params$lingimm.rec.scalar <- 100
params$lingimm.M <- 0
params$lingimm.walpha <- 1e-1
params$lingimm.wbeta <- 2
params$lingmat.init <- 1
params$lingmat.init.scalar <- 100
params$lingmat.rec.scalar <- 100
params$lingmat.M <- 0.95
params$lingmat.walpha <- 1e-6
params$lingmat.wbeta <- 2
params$ling.init.F <- 0.4
params$ling.mat.alpha <- 0.01
params$ling.mat.l50 <- 75
params$ling.mat.beta <- 0.01
params$ling.mat.a50 <- 7
params$ling.Linf <- 160
params$ling.bbin <- 6
params$ling.k <- 10
params$ricker.mu <- 1
params$ricker.lambda <- 1e-6
params$tagging_ckmr_weight <- 1.0
# capture.output(print(attributes(model_fn(params))), file = 'gadget3/test-likelihood_tagging_ckmr.baseline')
if (nzchar(Sys.getenv('G3_TEST_TMB'))) {
param_template <- attr(model_cpp, "parameter_template")
param_template$value <- params[param_template$switch]
gadget3:::ut_tmb_r_compare(model_fn, model_tmb, param_template)
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.