Description Usage Arguments Value Author(s) References Examples
create learned tesselation of feature space after PC transformation
1 2 3 4 5 6 |
formula |
standard formula, typically of the form "y~." where y denotes the class label variable to be predicted by all remaining features in the input data frame |
data |
a data.frame instance |
learnerSchema |
an instance of |
trainInds |
integer vector of rows of |
... |
additional parameters for use with |
dropIntercept |
logical indicating whether to include column of 1s among feature column-vectors |
ngpts |
number of equispaced points along the range of each input feature to use in forming a grid in feature space |
predExtras |
a list with named elements giving binding to extra parameters needed
to predict labels for the learner in use. For example, with
|
predWrapper |
Sometimes a function call is needed to extract the predicted
labels from the RObject applied to the |
instance of projectedLearner-class
VJ Carey <stvjc@channing.harvard.edu>
none.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | library(mlbench)
# demostrate with 3 dimensional hypercube problem
kk = mlbench.hypercube()
colnames(kk$x) = c("f1", "f2", "f3")
hcu = data.frame(cl=kk$classes, kk$x)
library(MLInterfaces)
set.seed(1234)
sam = sample(1:nrow(kk$x), size=nrow(kk$x)/2)
ldap = projectLearnerToGrid(cl~., data=hcu, ldaI,
sam, predWrapper=function(x)x$class)
plot(ldap)
confuMat(ldap@fittedLearner)
nnetp = projectLearnerToGrid(cl~., data=hcu, nnetI, sam, size=2,
decay=.01, predExtras=list(type="class"))
plot(nnetp)
confuMat(nnetp@fittedLearner)
if (require(rgl) && interactive()) {
learnerIn3D(nnetp)
## customising the rgl plot
learnerIn3D(nnetp, size = 10, alpha = 0.1)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.