knitr::read_chunk(system.file("reports", "scripts", "synergise.R", package="synapter"))
inputFiles <- rbind(c("Identification peptide:", basename(obj$IdentPeptideFile), nrow(obj$IdentPeptideData)), c("Identification fragments:", basename(obj$IdentFragmentFile), length(obj$IdentFragmentData)), c("Quantitation peptide:", basename(obj$QuantPeptideFile), nrow(obj$QuantPeptideData)), c("Quantitation Pep3D:", basename(obj$QuantPep3DFile), nrow(obj$QuantPep3DData)), c("Quantitation Spectra:", basename(obj$QuantSpectrumFile), length(obj$QuantSpectrumData)), c("Fasta file:", basename(obj$DbFastaFile), "")) colnames(inputFiles) <- c("", "File name", "Number of features") knitr::kable(inputFiles, align="llr")
parameters <- rbind(c("Master", master), c("Peptide FDR", fdr), c("Protein FPR", fpr), c("Peptide Length", peplen), c("Missed cleavages", missedCleavages), c("Isoleucin equals Leucin", IisL), c("Identification mass tolerance (ppm)", identppm), c("Quantitation mass tolerance (ppm)", quantppm), c("Loess span (RT modelling)", span.rt), c("Loess span (Intensity modelling)", span.int), c("Filtering unique peptides", as.character(uniquepep))) colnames(parameters) <- c("Parameter name", "Value") knitr::kable(parameters, align="lr")
gridParameters <- rbind(c("Mass tolerance (ppm) start", grid.ppm.from), c("Mass tolerance (ppm) end", grid.ppm.to), c("Mass tolerance (ppm) by", grid.ppm.by), c("Retention time stdev start", grid.nsd.from), c("Retention time stdev end", grid.nsd.to), c("Retention time stdev by", grid.nsd.by), c("Ion mobility start", grid.imdiffs.from), c("Ion mobility end", grid.imdiffs.to), c("Ion mobility by", grid.imdiffs.by), c("Feature proportion ", grid.subset), c("Number of features", grid.n), c("parameters selection", grid.param.sel)) colnames(gridParameters) <- c("Grid parameter", "Value") knitr::kable(gridParameters, align="lr")
fmParameters <- rbind(c("Fragment Matching mass tolerance (ppm)", fm.ppm), c("Minimal Intensity for Identification Fragments", fm.ident.minIntensity), c("Minimal Intensity for Quantitation Spectra", fm.quant.minIntensity), c("Minimum Number of Common Peaks", fm.minCommon), c("Minimum Number of Delta Common Peaks", fm.minDelta), c("Unique Matches FDR", fm.fdr.unique), c("Non-Unique Matches FDR", fm.fdr.nonunique)) colnames(fmParameters) <- c("Parameter name", "Value") knitr::kable(fmParameters, align="lr")
plotFeatures(obj, what="all", ionmobility=TRUE)
r if(grid.n) { paste0("Using", grid.n, "features.") } else { paste0("Using ",
grid.subset * 100, "% of the data.") }
# abuse inline r here to show the progress bar of the gridsearch in the # R console - regular r chunks capture stdout
r if (grid.n) { searchGrid(obj, ppms=seq(grid.ppm.from, grid.ppm.to, grid.ppm.by), nsds=seq(grid.nsd.from, grid.nsd.to, grid.nsd.by), imdiffs=seq(grid.imdiffs.from, grid.imdiffs.to, grid.imdiffs.by), n=grid.n, verbose=verbose) } else { searchGrid(obj, ppms=seq(grid.ppm.from, grid.ppm.to, grid.ppm.by), nsds=seq(grid.nsd.from, grid.nsd.to, grid.nsd.by), imdiffs=seq(grid.imdiffs.from, grid.imdiffs.to, grid.imdiffs.by), subset=grid.subset, verbose=verbose) }
names <- c("total", "model", "details") what <- c("total", "model", "details") for (i in seq(along=names)){ cat("\n####", names[i], "\n") cat("\n##### Image\n") plotGrid(obj, what=what[i]) cat("\n\n##### Tables {.tabset}\n") for (j in 1:dim(getGrid(obj)[[i]])[3]) { cat("\n###### imdiff:", dimnames(getGrid(obj)[[i]])[[3]][j], "\n") print(knitr::kable(as.data.frame(t(getGrid(obj)[[i]][,,j])))) } cat("\n##### Best Grid Parameters\n") cat("\nBest Grid Value ", names[i], ": ", getBestGridValue(obj)[i], "\n", sep="") print(knitr::kable(as.data.frame(getBestGridParams(obj)[[i]]))) }
gridDetails <- do.call(rbind, getGridDetails(obj)) cond <- do.call(rbind, strsplit(rownames(gridDetails), ":")) colnames(cond) <- c("nsd", "ppm", "imdiff") gridDetails <- cbind(cond, gridDetails) gridDetails[] <- as.numeric(gridDetails) rownames(gridDetails) <- NULL knitr::kable(as.data.frame(gridDetails))
Setting best grid parameters using 'r grid.param.sel
'
r obj$PpmError
r obj$RtNsd
findEMRTs(obj) plotEMRTtable(obj)
# abuse inline r here to show the progress bar of the fragment matching in the # R console - regular r chunks capture stdout
plotCumulativeNumberOfFragments(obj, what = "fragments.ident") plotCumulativeNumberOfFragments(obj, what = "spectra.quant")
r invisible(filterFragments(obj, what="fragments.ident", minIntensity=fm.ident.minIntensity))
r invisible(filterFragments(obj, what="spectra.quant", minIntensity=fm.quant.minIntensity))
r invisible(fragmentMatching(obj, ppm = fm.ppm))
r invisible({pdf(file.path(outputdir, "FragmentMatching.pdf"), width=10, height=8); plotFragmentMatching(obj); dev.off()})
fragmentMatchingStats <- plotFragmentMatchingPerformance(obj)
names <- c("Unique Matches", "Non-Unique Matches") firstColumn <- c("Number of Common Peaks", "Delta Common Peaks") for (i in seq(along=names)){ cat("\n####", names[i], "\n") tab <- as.data.frame(fragmentMatchingStats[[i]]) colnames(tab) <- c(firstColumn[i], toupper(colnames(tab)[-1])) print(knitr::kable(tab)) }
common <- c(NA, NA) selCommon <- which(fragmentMatchingStats$unique[, "ncommon"] >= fm.minCommon & fragmentMatchingStats$unique[, "fdr"] <= fm.fdr.unique)[1] if (!is.na(selCommon)) { common <- fragmentMatchingStats$unique[selCommon, c("ncommon", "fdr")] filterUniqueMatches(obj, minNumber = common[1L]) } delta <- c(NA, NA) selDelta <- which(fragmentMatchingStats$nonunique[, "deltacommon"] >= fm.minDelta & fragmentMatchingStats$nonunique[, "fdr"] <= fm.fdr.nonunique)[1] if (!is.na(selDelta)) { delta <- fragmentMatchingStats$nonunique[selDelta, c("deltacommon", "fdr")] filterNonUniqueMatches(obj, minDelta = delta[1L]) } filterNonUniqueIdentMatches(obj) tab <- cbind(paste(names, firstColumn, sep=" - "), rbind(common, delta)) colnames(tab) <- c("Type", "Value", "FDR") rownames(tab) <- NULL print(knitr::kable(tab))
rescueEMRTs(obj, mergedEMRTs) plotEMRTtable(obj)
## @knitr synergise.emrt.table tab <- as.data.frame(getEMRTtable(obj)) colnames(tab) <- c("Number of assigned EMRTs", "Freq") knitr::kable(tab)
plotIntensity(obj, what="data")
setLowessSpan(obj, span.int) modelIntensity(obj) plotIntensity(obj, what="model", nsd=1) ## better focus on model
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.