#' Defualt parameter settings of FEBAMA framework
#'
#' @export
model_conf_default <- function(){
num_models = 4
parameter_list = list(
frequency = 12 # Monthly data
, ets_model = "AAN"
, ts_scale = T # Whether the time series needs standardization.
, forecast_h = 18 # Forecasting horizon
, train_h = 1 # Out of sample training, 1 means rolling forecast
, history_burn = 25 # Let the model to start with at least this length of historical data.
, PI_level = 90 # Predictive Interval level, used to extract out-of-sample variance from forecasting models.
, roll = NULL # The length of rolling samples, larger than history_burn.
, feature_window = NULL # The length of moving window when computing features
, features_used = rep(list(c("x_acf1","diff1_acf1", "entropy",
"alpha", "beta", "unitroot_kpss")), num_models - 1)
, fore_model = c("ets_fore", "naive_fore", "rw_drift_fore","auto.arima_fore")
, lpd_features_parl = list(par = F, ncores = 1) # Whether parallel when computing predictive densities and features.
## Variable selection settings. By default, every model shares the same
## settings. Otherwise, write the full list, same applies to priArgs, this would allow
## for some models with only intercept. Variable selection candidates, NULL: no
## variable selection use the full covariates provided by $init. ("all-in", "all-out",
## "random", or user-input)
, varSelArgs = rep(list(list(cand = "2:end", init = "all-in")), num_models - 1)
, priArgs = rep(list(list("beta" = list(type = "cond-mvnorm",
mean = 0, covariance = "identity", shrinkage = 10),
"betaIdx" = list(type = "beta", alpha0 = 1, beta0 = 1))), num_models - 1)
, algArgs = list(initOptim = TRUE,
algName = "MAP",
nIter = 1,
"sgld" = list(max_batchSize = 108,
nEpoch = 10,
burninProp = 0.4,
stepsize = 0.1,
gama = 0.55,
a = 0.4,
b = 10)
)
)
parameter_list
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.