context("check routines in log.euclidean.R")
test_that("check routines in log.euclidean.R", {
eps <- 1e-2
library(expm)
M <- matrix(c(2.23352473, 0.62537226, -0.42983609,
0.62537226, 1.34851589, -0.49748003,
-0.42983609, -0.49748003, 0.822512), 3,3, byrow=T)
dM <- matrix(c(0.77675883, -0.15213052, 1.18733413,
-0.15213052, 0.45820972, 0.01693541,
1.18733413, 0.01693541, -0.40507469),3,3, byrow=T)
R <- 0
max.it <- 100
for(k in 1:max.it)
{
S <- 0
for(j in 0:(k-1))
S <- S + (M %^% (k-j-1)) %*% dM %*% (M %^% j)
R <- R + S / factorial(k)
}
expect_true(frobenius.norm(R-d.expm(M,dM)) < eps)
for(d in c(1,3))
{
mfd <- matrix.manifold('spd','LogEuclidean',dim=c(d,d))
P <- diag(d)
W <- rsym(d,1)
V <- rsym(d,1)
m <- rie.metric.spd_LogEuclidean(mfd,P,W,V)
expect_true(abs(m-sum(W*V)) < eps)
A <- rmat(d,d)
P <- make.sym(A %*% t(A))
W <- runif(1) * W / sqrt(rie.metric.spd_LogEuclidean(mfd,P,W,W))
S <- rie.exp.spd_LogEuclidean(mfd,P,W)
V <- rie.log.spd_LogEuclidean(mfd,P,S)
expect_true(frobenius.norm(W-V) < eps)
U <- geodesic(mfd,P,V,1)
expect_true(frobenius.norm(U-S) < eps)
Sf <- geodesic(mfd,P,V,1/2)
expect_true(abs(geo.dist(mfd,P,Sf)^2-rie.metric(mfd,P,W,W)/4) < eps)
A <- rmat(d,d)
P <- make.sym(A %*% t(A))
W <- rsym(d,1)
W <- W / sqrt(rie.metric.spd_LogEuclidean(mfd,P,W,W))
V <- rsym(d,1)
A <- rmat(d,d)
Q <- make.sym(A %*% t(A))
X <- parallel.transport.spd_LogEuclidean(mfd,P,Q,V)
Y <- parallel.transport.spd_LogEuclidean(mfd,P,Q,W)
expect_true(abs(rie.metric.spd_LogEuclidean(mfd,P,W,V)-
rie.metric.spd_LogEuclidean(mfd,Q,X,Y)) < eps)
mfd <- matrix.manifold('spd','LogEuclidean',c(d,d))
for(n in c(1,10))
{
mu <- diag(rep(1,d)) #rmatrix.spd_LogCholesky(mfd,n=1,sig=0.1,drop=T)
S <- rsym(d,n,drop=F)
expect_true(all(dim(S)==c(mfd$dim,n)))
S <- rmatrix.spd_LogEuclidean(mfd,n,drop=F,mu=mu)
expect_true(all(sapply(1:n, function(i){
is.spd(S[,,i])
})))
V <- rtvecor.spd_LogEuclidean(mfd,n=n,sig=0.1,drop=F)
expect_true(all(sapply(1:n, function(i){
is.sym(V[,,i])
})))
mu <- rmatrix.spd_LogEuclidean(mfd,n=1)
V <- center.matrices(V)
Q <- array(0,c(d,d,n))
for(i in 1:n)
{
Q[,,i] <- rie.exp.spd_LogEuclidean(mfd,mu,V[,,i])
}
Q.mu <- frechet.mean.spd_LogEuclidean(mfd,Q)
expect_true(frobenius.norm(mu-Q.mu) < eps)
}
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.