isotonic_calibration: Isotonic probability calibration

Description Usage Arguments Value Note Author(s) References Examples

View source: R/isotonic_calibration.R

Description

Performs an isotonic regression calibration of posterior probability to minimize log loss.

Usage

1
isotonic_calibration(y, p, regularization = FALSE)

Arguments

y

Binomial response variable used to fit model

p

Estimated probabilities from fit model

regularization

(FALSE/TRUE) should regularization be performed on the probabilities? (see notes)

Value

a vector of calibrated probabilities

Note

Isotonic calibration can correct for monotonic distortions.

regularization defines new minimum and maximum bound for the probabilities using:

pmax = ( n1 + 1) / (n1 + 2), pmin = 1 / ( n0 + 2); where n1 = number of prevalence values and n0 = number of null values

Author(s)

Jeffrey S. Evans <jeffrey_evans<at>tnc.org>

References

Platt, J. (1999) Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. Advances in Large Margin Classifiers (pp 61-74).

Niculescu-Mizil, A., & R. Caruana (2005) Obtaining calibrated probabilities from boosting. Proc. 21th Conference on Uncertainty in Artificial Intelligence (UAI 2005). AUAI Press.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
 library(randomForest)
 data(iris)
 iris$Species <- ifelse( iris$Species == "versicolor", 1, 0 )

 # Add some noise
 idx1 <- which(iris$Species %in% 1)
 idx0 <- which( iris$Species %in% 0)
 iris$Species[sample(idx1, 2)] <- 0
 iris$Species[sample(idx0, 2)] <- 1

 # Specify model
 y = iris[,"Species"]
 x = iris[,1:4]
 set.seed(4364)
 (rf.mdl <- randomForest(x=x, y=factor(y)))
 y.hat <- predict(rf.mdl, iris[,1:4], type="prob")[,2]

 # Calibrate probabilities
 calibrated.y.hat <- probability.calibration(y, y.hat, regularization = TRUE)

 # Plot calibrated against original probability estimate
 plot(density(y.hat), col="red", xlim=c(0,1), ylab="Density", xlab="probabilities",
      main="Calibrated probabilities" )
        lines(density(calibrated.y.hat), col="blue")
          legend("topright", legend=c("original","calibrated"),
 	            lty = c(1,1), col=c("red","blue"))

liuhongwei2018/calibration documentation built on Dec. 8, 2019, 1:35 p.m.