#' @name performance_ODTR
#' @aliases performance_ODTR
#' @title Performance ODTR
#' @description performance function for the ODTR
#'
#' @param x dummy
#' @param n n
#' @param risk.type risk.type
#' @param DGP_fun DGP_fun
#' @param QAW QAW
#' @param QAW.SL.library library for QAW
#' @param blip.SL.library library for blip
#' @param dopt.SL.library library for dopt
#' @param metalearner SL type
#'
#' @return performance metrics odtr
#'
#' @export
#'
# optimal dynamic regime performance function
# odtr_performance
performance_ODTR = function(x, n, risk.type, DGP_fun, QAW, QAW.SL.library, blip.SL.library, dopt.SL.library, metalearner){
ObsData = subset(DGP_fun(n), select = -c(A_star, Y_star))
W = subset(ObsData, select = -c(A, Y))
V = W
A = ObsData$A
Y = ObsData$Y
grid.size = 500
g.SL.library = "SL.mean"
results = odtr(V=V, W=W, A=A, Y=Y, g.SL.library = g.SL.library, QAW.SL.library = QAW.SL.library, blip.SL.library=blip.SL.library,
dopt.SL.library = dopt.SL.library, metalearner = metalearner,
risk.type=risk.type, grid.size=grid.size, QAW.fun = QAW)
print(x)
return(results)
}
#' @name performance_EYdopt
#' @aliases performance_EYdopt
#' @title Performance EYdopt
#' @description performance function for EYdopt
#'
#' @param x dummy
#' @param n n
#' @param DGP_fun DGP_fun
#' @param QAW QAW
#' @param g.SL.library library for g
#' @param QAW.SL.library library for QAW
#' @param blip.SL.library library for blip
#' @param VFolds CV Folds
#'
#' @return performance metrics EYdopt
#'
#' @export
#'
# EYdopt performance function
performance_EYdopt = function(x, n, DGP_fun, QAW, QAW.SL.library, blip.SL.library, grid.size, contrast = NULL){
ObsData = subset(DGP_fun(n), select = -c(A_star, Y_star))
W = subset(ObsData, select = -c(A, Y))
V = W
A = ObsData$A
Y = ObsData$Y
risk.type = "CV TMLE"
kappa = NULL
metalearner = "blip"
VFolds = 10
g.SL.library = "SL.mean"
results = EYdopt(V=V, W=W, A=A, Y=Y, g.SL.library = g.SL.library, QAW.SL.library = QAW.SL.library, blip.SL.library=blip.SL.library, dopt.SL.library = dopt.SL.library,
metalearner = metalearner, risk.type=risk.type, grid.size=grid.size, VFolds=VFolds, QAW.fun = QAW, contrast = contrast)
print(x)
return(results)
}
#' @name performance_EYgstar
#' @aliases performance_EYgstar
#' @title Performance EYgstar
#' @description performance function for EYgstar
#'
#' @param x dummy
#' @param risk.type risk.type
#' @param cs_to_try cs_to_try
#' @param alphas_to_try alphas_to_try
#' @param VFolds CV Folds
#'
#' @return performance metrics EYgstar
#'
#' @export
#'
# EYgstar performance function
performance_EYgstar = function(x, n, risk.type, cs_to_try, alphas_to_try, QAW.SL.library, blip.SL.library, DGP_fun, QAW.fun){
ObsData = subset(DGP_fun(441), select = -c(A_star, Y_star))
W = subset(ObsData, select = -c(A, Y))
V = W
A = ObsData$A
Y = ObsData$Y
kappa = NULL
metalearner = "discrete"
VFolds = 10
#g.SL.library = "SL.mean"
g.SL.library = "SL.glm"
grid.size = 100
contrast = NULL
results = EYgstar(V=V, W=W, A=A, Y=Y, g.SL.library = g.SL.library, QAW.SL.library = QAW.SL.library, blip.SL.library=blip.SL.library,
metalearner = metalearner, risk.type=risk.type, grid.size=grid.size, VFolds=VFolds, QAW.fun = QAW.fun, contrast = contrast, cs_to_try = cs_to_try, alphas_to_try = alphas_to_try)
print(x)
return(results)
}
#' @name performance_EYgRC
#' @aliases performance_EYgRC
#' @title Performance EYgRC
#' @description performance function for EYgRC
#'
#' @param x dummy
#' @param kappa risk.type
#'
#' @return performance metrics EYgRC
#'
#' @export
#'
# EYgRC performance function
performance_EYgRC = function(x, n, kappa, DGP_fun, QAW.fun, QAW.SL.library, blip.SL.library, grid.size, contrast = NULL){
ObsData = DGP_fun(n, QAW.fun = QAW.fun)
W = data.frame(ObsData[,grep("W", colnames(ObsData))])
V = W
A = ObsData$A
Y = ObsData$Y
metalearner = "blip"
VFolds = 10
g.SL.library = "SL.glm"
grid.size = 100
risk.type = "CV TMLE"
results = suppressMessages(EYgRC(V=V, W=W, A=A, Y=Y, g.SL.library = g.SL.library, QAW.SL.library = QAW.SL.library, blip.SL.library=blip.SL.library, kappa = kappa,
metalearner = metalearner, risk.type=risk.type, grid.size=grid.size, VFolds=VFolds, QAW.fun = QAW.fun, contrast = contrast))
print(x)
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.