devtools::load_all()
# define parameters -----------------------------------------------------------
in_path <- file.path("output", "termal_response_fits", "informative")
covariates <- c("DayTemp_const_term", "NightTemp_const_term")
response <- "pred_R0_1"
dir_save <- file.path("figures", "trait_R0_relationships")
dir_output_save <- file.path("output", "central_estimates_from_Mordecai")
# load data -------------------------------------------------------------------
a_samps <- readRDS(file.path(in_path, "a_samps.rds"))
b_samps <- readRDS(file.path(in_path, "b_samps.rds"))
c_samps <- readRDS(file.path(in_path, "c_samps.rds"))
MDR_samps <- readRDS(file.path(in_path, "MDR_samps.rds"))
EFD_samps <- readRDS(file.path(in_path, "EFD_samps.rds"))
e2a_samps <- readRDS(file.path(in_path, "e2a_samps.rds"))
PDR_samps <- readRDS(file.path(in_path, "PDR_samps.rds"))
lf_samps <- readRDS(file.path(in_path, "lf_DENV_samps.rds"))
foi_covariates <- readRDS(file.path("output", "foi_data_cov_rescaled.rds"))
# pre process -----------------------------------------------------------------
# Length of samples, assuming they're all the same length
n <- dim(a_samps)[1]
thinned <- seq(1, n, by = 5)
lthin <- length(thinned)
# calculate R0 with constant temp ---------------------------------------------
for (i in seq_along(covariates)){
covar <- covariates[i]
temp <- foi_covariates[, covar]
t <- length(temp)
### Calculate R0 and each trait across the thinned posterior samples
R0 <- matrix(NA, t, lthin)
a <- b <- c <- PDR <- MDR <- EFD <- e2a <- lf <- matrix(NA, t, lthin)
for (j in seq_len(lthin)) {
# if(j %% 50 == 0) cat("iteration =", j, "\n")
# calculate parameter trajectories
i <- thinned[j]
a[, j] <- briere(temp, a_samps[i,3], a_samps[i,2], a_samps[i,1])
PDR[, j] <- briere(temp, PDR_samps[i,3], PDR_samps[i,2], PDR_samps[i,1])
MDR[, j] <- briere(temp, MDR_samps[i,3], MDR_samps[i,2], MDR_samps[i,1])
EFD[, j] <- briere(temp, EFD_samps[i,3], EFD_samps[i,2], EFD_samps[i,1])
e2a[, j] <- quad.2.trunc(temp, e2a_samps[i,1], e2a_samps[i,2], e2a_samps[i,3])
b[, j] <- briere.trunc(temp, b_samps[i,3], b_samps[i,2], b_samps[i,1])
c[, j] <- briere.trunc(temp, c_samps[i,3], c_samps[i,2], c_samps[i,1])
lf[, j] <- quad.2(temp, lf_samps[i,1], lf_samps[i,2], lf_samps[i,3])
# Calculate R0 equation
R0[, j] <- myR0(a[, j], b[, j], c[, j], PDR[, j], MDR[, j], EFD[, j], e2a[, j], lf[, j])
}
R0.M <- rowMeans(R0)
foi_covariates[, response] <- R0.M
# take central estimates of parameters across posterior samples
a_mean <- t(apply(a, 1, average_boot_samples_dim1))
PDR_mean <- t(apply(PDR, 1, average_boot_samples_dim1))
MDR_mean <- t(apply(MDR, 1, average_boot_samples_dim1))
EFD_mean <- t(apply(EFD, 1, average_boot_samples_dim1))
e2a_mean <- t(apply(e2a, 1, average_boot_samples_dim1))
b_mean <- t(apply(b, 1, average_boot_samples_dim1))
c_mean <- t(apply(c, 1, average_boot_samples_dim1))
lf_mean <- t(apply(lf, 1, average_boot_samples_dim1))
# save central estimates
write_out_rds(dat = a_mean, my_path = dir_output_save, file_name = paste0("a_mean_", covar))
write_out_rds(dat = PDR_mean, my_path = dir_output_save, file_name = paste0("PDR_mean_", covar))
write_out_rds(dat = MDR_mean, my_path = dir_output_save, file_name = paste0("MDR_mean_", covar))
write_out_rds(dat = EFD_mean, my_path = dir_output_save, file_name = paste0("EFD_mean_", covar))
write_out_rds(dat = e2a_mean, my_path = dir_output_save, file_name = paste0("e2a_mean_", covar))
write_out_rds(dat = b_mean, my_path = dir_output_save, file_name = paste0("b_mean_", covar))
write_out_rds(dat = c_mean, my_path = dir_output_save, file_name = paste0("c_mean_", covar))
write_out_rds(dat = lf_mean, my_path = dir_output_save, file_name = paste0("lf_mean_", covar))
# make plot and save
p <- preds_vs_obs_scatter_plot_2(df = foi_covariates,
x = covar,
y = response)
save_plot(p,
out_pth = dir_save,
out_fl_nm = paste0(response, "_", covar),
wdt = 8,
hgt = 8)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.