plot_clr_history: Simple plotting utility

Description Usage Arguments Examples

View source: R/plot.R

Description

Simple plotting utility

Usage

1
2
3
4
5
6
plot_clr_history(
  callback_clr,
  granularity = "epoch",
  backend = "ggplot2",
  trans_y_axis = "identity"
)

Arguments

callback_clr

An object of class CyclicLR.

granularity

Either "epoch" or "iteration". We advise to use epoch as we find it easier to work with. The plot will look very similar (except for the x-axis scaling) for both options as long as you choosed step_size in new_callback_cyclical_learning_rate() to be more iterations than one epoch has.

backend

Either "base" for base R or "ggplot2".

trans_y_axis

Value passed to ggplot2::scale_y_continuous() as the trans argument. Only supported for backend = "ggplot2".

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
library(keras)
dataset <- dataset_boston_housing()
c(c(train_data, train_targets), c(test_data, test_targets)) %<-% dataset

mean <- apply(train_data, 2, mean)
std <- apply(train_data, 2, sd)
train_data <- scale(train_data, center = mean, scale = std)
test_data <- scale(test_data, center = mean, scale = std)


model <- keras_model_sequential() %>%
  layer_dense(
    units = 64, activation = "relu",
    input_shape = dim(train_data)[[2]]
  ) %>%
  layer_dense(units = 64, activation = "relu") %>%
  layer_dense(units = 1)
model %>% compile(
  optimizer = optimizer_rmsprop(lr = 0.001),
  loss = "mse",
  metrics = c("mae")
)

callback_clr <- new_callback_cyclical_learning_rate(
  step_size = 32,
  base_lr = 0.001,
  max_lr = 0.006,
  gamma = 0.99,
  mode = "exp_range"
)
model %>% fit(
  train_data, train_targets,
  validation_data = list(test_data, test_targets),
  epochs = 10, verbose = 1,
  callbacks = list(callback_clr)
)
callback_clr$history
plot_clr_history(callback_clr, backend = "base")

lorenzwalthert/KerasMisc documentation built on May 7, 2021, 6:31 a.m.