Test_aSPA: Test average Superior Predictive Ability

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/Test_aSPA.R

Description

Implements the test for average Superior Predictive Ability (aSPA) of Quaedvlieg (2021)

Usage

1
Test_aSPA(LossDiff, weights, L, B = 999)

Arguments

LossDiff

the T x H matrix forecast path loss differential

weights

the 1 x H vector of weights for the losses at different horizons. For instance weights <- matlab::ones(1,20)/20

L

integer, the parameter for the moving block bootstrap

B

integer, the number of bootstrap iterations. Default 999

Value

A list containing two objects:

"p_value"

the p-value for aSPA

"t_aSPA"

the statistics for aSPA

Author(s)

Luca Barbaglia https://lucabarbaglia.github.io/

References

Quaedvlieg, Rogier. "Multi-horizon forecast comparison." Journal of Business & Economic Statistics 39.1 (2021): 40-53.

See Also

Test_uSPA

Examples

1
2
3
4
5
6
7
8
9
## Test for aSPA and uSPA

Trow <- 200 
H <- 12
Mmethods <- 5
weights <- rep(1/H,H)
Losses <- matrix(rnorm(Trow*H, mean = 0), nrow = Trow, ncol = H)

Test_aSPA(LossDiff=Losses, weights=weights, L=3, B=5)

lucabarbaglia/MultiHorizonSPA documentation built on Dec. 12, 2021, 5:43 a.m.