EM_VAR: EM_VAR

Description Usage Arguments Value Author(s) References

View source: R/EM_VAR.R

Description

EM algorithm for the Robust Sparse VAR with errors following a multivariate t-distribution (without estimation of df)

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
EM_VAR(
  Data_EM,
  P,
  type_lasso = "Lasso",
  nu,
  maxit.EM = 25,
  tol.EM = 0.01,
  maxit.both = 50,
  tol.both = 0.01,
  lambda1_min = NULL,
  lambda1_max = NULL,
  lambda1_steps = NULL,
  gamma1_min = NULL,
  gamma1_max = NULL,
  gamma1_steps = NULL,
  lambda1_OPT = NULL,
  gamma1_OPT = NULL
)

Arguments

Data_EM

a NxJ matrix of log-volatilities. J: number of time series. N: time series length

P

VAR order

type_lasso

type of lasso penalty. "Lasso" for standard lasso, "Group" for group lasso. Default is "Lasso".

nu

degrees-of-freedom of the multivaraite t-distribution of the VAR innovations.

maxit.EM

maximum iterations for EM algorithm. Default is 25.

tol.EM

tolerance EM algorithm. Default is 0.01.

maxit.both

maximum iterations for gaussian lasso algorithm. Default is 50.

tol.both

tolerance gaussian lasso algorithm. Default is 0.01.

lambda1_min

minimum value of the regularization parameter on Beta. Default is NULL.

lambda1_max

maximum value of the regularization parameter on Beta. Default is NULL.

lambda1_steps

number of steps in the lambda grid. Default is NULL.

gamma1_min

minimum value of the regularization parameter on Omega. Default is NULL.

gamma1_max

maximum value of the regularization parameter on Omega. Default is NULL.

gamma1_steps

number of steps in the gamma grid. Default is NULL.

lambda1_OPT

optimal value of the regularization parameter on Beta. Default is NULL.

gamma1_OPT

optimal value of the regularization parameter on Omega. Default is NULL.

Value

A list containing:

"Beta_new"

a vector containing the estimated Beta.

"Beta_arr"

a JxJxP array containing the estimated Beta.

"innov"

a (N-P)xJ containing the estimated VAR residuals.

"Omega_new"

a JxJ matrix containing the estimated Omega.

"tau_new"

a vector of length N-P containing the estimated gamma variable tau.

"Obj_ECM"

objective function.

"iter_ECM"

number of iterations of the ECM algorithm.

"iter_vec"

number of iteration of the Gaussian Lasso algorithm for each ECM iteration.

"lambda1_opt"

selected value of the regularization parameter on Beta.

"gamma1_opt"

selected value of the regularization parameter on Omega.

Author(s)

Luca Barbaglia https://lucabarbaglia.github.io/

References

Barbaglia, L., Croux, C., & Wilms, I. (2020). Volatility spillovers in commodity markets: A large t-vector autoregressive approach. Energy Economics, 85, 104555.


lucabarbaglia/t-VAR documentation built on Feb. 27, 2021, 3:46 a.m.