Description Usage Arguments Value Author(s) References
ECM algorithm for the Large VAR with errors following a multivariate t-distribution with estimation of the degrees of freedom
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | Large.tVAR(
Data_ECM,
P,
type_lasso = "Lasso",
nu_init = NULL,
maxit.ECM = 25,
tol.ECM = 0.01,
tol.nu = 0.001,
maxit.both = 50,
tol.both = 0.01,
maxit.nu = 100,
lambda1_min = NULL,
lambda1_max = NULL,
lambda1_steps = NULL,
gamma1_min = NULL,
gamma1_max = NULL,
gamma1_steps = NULL,
lambda1_OPT = NULL,
gamma1_OPT = NULL
)
|
Data_ECM |
a NxJ matrix of log-volatilities. J: number of time series. N: time series length. |
P |
VAR order |
type_lasso |
type of lasso penalty. "Lasso" for standard lasso, "Group" for group lasso. Default is "Lasso". |
nu_init |
degrees-of-freedom initial value. Default is 1000. |
maxit.ECM |
maximum iterations for ECM algorithm. Default is 25. |
tol.ECM |
tolerance ECM algorithm. Default is 0.01. |
maxit.both |
maximum iterations for gaussian lasso algorithm. Default is 50. |
tol.both |
tolerance gaussian lasso algorithm. Default is 0.01. |
maxit.nu |
maximum iteration for estimation of the degrees-of-freedom. Default is 1000. |
lambda1_min |
minimum value of the regularization parameter on Beta. Default is NULL. |
lambda1_max |
maximum value of the regularization parameter on Beta. Default is NULL. |
lambda1_steps |
number of steps in the lambda grid. Default is NULL. |
gamma1_min |
minimum value of the regularization parameter on Omega. Default is NULL. |
gamma1_max |
maximum value of the regularization parameter on Omega. Default is NULL. |
gamma1_steps |
number of steps in the gamma grid. Default is NULL. |
lambda1_OPT |
optimal value of the regularization parameter on Beta. Default is NULL. |
gamma1_OPT |
optimal value of the regularization parameter on Omega. Default is NULL. |
A list containing:
"Beta_new" |
a vector containing the estimated Beta. |
"Beta_arr" |
a JxJxP array containing the estimated Beta. |
"innov" |
a (N-P)xJ containing the estimated VAR residuals. |
"Omega_new" |
a JxJ matrix containing the estimated Omega. |
"tau_new" |
a vector of length N-P containing the estimated gamma variable tau. |
"nu_new" |
estimated degrees-of-freedom of the multivaraite t-distribution of the VAR innovations. |
"Obj_ECM" |
objective function. |
"iter_ECM" |
number of iterations of the ECM algorithm. |
"iter_vec" |
number of iteration of the Gaussian Lasso algorithm for each ECM iteration. |
"lambda1_opt" |
selected value of the regularization parameter on Beta. |
"gamma1_opt" |
selected value of the regularization parameter on Omega. |
Luca Barbaglia https://lucabarbaglia.github.io/
Barbaglia, L., Croux, C., & Wilms, I. (2020). Volatility spillovers in commodity markets: A large t-vector autoregressive approach. Energy Economics, 85, 104555.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.