Description Usage Arguments Value Author(s) References
Function for the joint estimation of of beta and omega
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
Y |
a vector of length J(N-P) cointaining the responses. Obtained with funxtion "stack_y". J: number of time series. N: time series length. |
X |
a J(N-P)xPJ^2 matrix cointainig the regressor. Obtained with function "stack_Xbig". |
P |
VAR order. |
type_lasso |
type of lasso penalty. "Lasso" for standard lasso, "Group" for group lasso. Default is "Lasso". |
tol.both |
tolerance gaussian lasso algorithm. Default is 0.01. |
maxit.both |
maximum iterations for gaussian lasso algorithm. Default is 50. |
lambda1_min |
minimum value of the regularization parameter on Beta. Default is NULL. |
lambda1_max |
maximum value of the regularization parameter on Beta. Default is NULL. |
lambda1_steps |
number of steps in the lambda grid. Default is NULL. |
gamma1_min |
minimum value of the regularization parameter on Omega. Default is NULL. |
gamma1_max |
maximum value of the regularization parameter on Omega. Default is NULL. |
gamma1_steps |
number of steps in the gamma grid. Default is NULL. |
lambda1_OPT |
optimal value of the regularization parameter on Beta. Default is NULL. |
gamma1_OPT |
optimal value of the regularization parameter on Omega. Default is NULL. |
A list containing two objects:
"beta.new" |
a vector containing the estimated Beta. |
"beta.arr" |
a JxJxP array containing the estimated Beta. |
"omega.new" |
a JxJ matrix containing the estimated Omega. |
"Obj_JGrL" |
objective function. |
"iter" |
number of iterations. |
"lambda" |
selected value of the regularization parameter on Beta. |
"gamma" |
selected value of the regularization parameter on Omega. |
Luca Barbaglia https://lucabarbaglia.github.io/
Barbaglia, L., Croux, C., & Wilms, I. (2020). Volatility spillovers in commodity markets: A large t-vector autoregressive approach. Energy Economics, 85, 104555.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.