| sdm_sim | R Documentation | 
sdm_sim: Simulate single species dispersal dynamics using the BAM framework.
sdm_sim( set_A, set_M, initial_points, nsteps, stochastic_dispersal = TRUE, disp_prop2_suitability = TRUE, disper_prop = 0.5, progress_bar = TRUE )
| set_A | A setA object returned by the function  | 
| set_M | A setM object cointaining the adjacency matrix of the study area.
See  | 
| initial_points | A sparse vector returned by the function
 | 
| nsteps | Number of steps to run the simulation | 
| stochastic_dispersal | Logical. If dispersal depends on a probability of visiting neighbor cells (Moore neighborhood). | 
| disp_prop2_suitability | Logical. If probability of dispersal is proportional to the suitability of reachable cells. The proportional value must be declered in the parameter 'disper_prop'. | 
| disper_prop | Probability of dispersal to reachable cells. | 
| progress_bar | Show progress bar | 
## Not run: 
model_path <- system.file("extdata/Lepus_californicus_cont.tif",
                          package = "bam")
model <- raster::raster(model_path)
sparse_mod <- bam::model2sparse(model,threshold=0.05)
adj_mod <- bam::adj_mat(sparse_mod,ngbs=1)
occs_lep_cal <- data.frame(longitude = c(-110.08880,
                                         -98.89638),
                           latitude = c(30.43455,
                                        25.19919))
occs_sparse <- bam::occs2sparse(modelsparse = sparse_mod,
                                occs = occs_lep_cal)
sdm_lep_cal <- bam::sdm_sim(set_A = sparse_mod,
                            set_M = adj_mod,
                            initial_points = occs_sparse,
                            nsteps = 10,
                            stochastic_dispersal = TRUE,
                            disp_prop2_suitability=TRUE,
                            disper_prop=0.5,
                            progress_bar=TRUE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.