| sdm_sim | R Documentation |
sdm_sim: Simulate single species dispersal dynamics using the BAM framework.
sdm_sim( set_A, set_M, initial_points, nsteps, stochastic_dispersal = TRUE, disp_prop2_suitability = TRUE, disper_prop = 0.5, progress_bar = TRUE )
set_A |
A setA object returned by the function |
set_M |
A setM object cointaining the adjacency matrix of the study area.
See |
initial_points |
A sparse vector returned by the function
|
nsteps |
Number of steps to run the simulation |
stochastic_dispersal |
Logical. If dispersal depends on a probability of visiting neighbor cells (Moore neighborhood). |
disp_prop2_suitability |
Logical. If probability of dispersal is proportional to the suitability of reachable cells. The proportional value must be declered in the parameter 'disper_prop'. |
disper_prop |
Probability of dispersal to reachable cells. |
progress_bar |
Show progress bar |
## Not run:
model_path <- system.file("extdata/Lepus_californicus_cont.tif",
package = "bam")
model <- raster::raster(model_path)
sparse_mod <- bam::model2sparse(model,threshold=0.05)
adj_mod <- bam::adj_mat(sparse_mod,ngbs=1)
occs_lep_cal <- data.frame(longitude = c(-110.08880,
-98.89638),
latitude = c(30.43455,
25.19919))
occs_sparse <- bam::occs2sparse(modelsparse = sparse_mod,
occs = occs_lep_cal)
sdm_lep_cal <- bam::sdm_sim(set_A = sparse_mod,
set_M = adj_mod,
initial_points = occs_sparse,
nsteps = 10,
stochastic_dispersal = TRUE,
disp_prop2_suitability=TRUE,
disper_prop=0.5,
progress_bar=TRUE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.