#' works for dataframes
predict_distance_forest<-function(
survival_forest,
numeric_predictor,
factor_predictor,
data,
missing="omit"){
if(!formula.tools::is.one.sided(numeric_predictor))stop("Invalid 'numeric_predictor' formula.")
if(!formula.tools::is.one.sided(factor_predictor))stop("Invalid 'factor_predictor' formula.")
if(missing(data)){
mf_numeric_predictor<-eval(substitute(model.frame(numeric_predictor,na.action="na.pass")))
mf_factor_predictor<-eval(substitute(model.frame(factor_predictor),na.action="na.pass"))
}else{
mf_numeric_predictor<-eval(substitute(model.frame(numeric_predictor,data=data,na.action="na.pass")))
mf_factor_predictor<-eval(substitute(model.frame(factor_predictor,data=data,na.action="na.pass")))
}
if(!all(sapply(mf_numeric_predictor[[1]],class)%in%c("integer","numeric")))stop("Invalid 'numeric_predictor' formula")
if(!all(sapply(mf_factor_predictor[[1]],class)%in%c("factor","character")))stop("Invalid 'factor_predictor' formula")
matrix_numeric<-as.matrix(mf_numeric_predictor)
matrix_factor<-as.matrix(mf_factor_predictor)
matrix_factor<-apply(matrix_factor,c(1,2),as.character)
ndim_numeric<-ncol(matrix_numeric)
ndim_factor<-ncol(matrix_factor)
nind_test<-nrow(matrix_numeric)
# check dimensions
if(nrow(matrix_numeric)!=nrow(matrix_factor))stop("'nrow(matrix_numeric)' and 'nrow(matrix_factor) are different.'")
if(ndim_numeric!=survival_forest$ndim_numeric)stop("'ncol(matrix_numeric)' inconsistent with training data.'")
if(ndim_factor!=survival_forest$ndim_factor)stop("'ncol(matrix_factor)' inconsistent with training data.'")
sum_distance<-matrix(0,nind_test,nind_test)
sum_non_na<-matrix(0,nind_test,nind_test)
for(boot_idx in 1:length(survival_forest$survival_forest)){
a_distance<-predict_distance_tree_matrix(
survival_forest$survival_forest[[boot_idx]],
matrix_numeric,
matrix_factor,
missing=missing)$ind_distance
sum_non_na<-sum_non_na+!is.na(a_distance)
a_distance[is.na(a_distance)]<-0
sum_distance<-sum_distance+a_distance
}
mean_distance<-sum_distance/sum_non_na
return(list(
mean_distance=mean_distance,
sum_distance=sum_distance,
sum_non_na=sum_non_na))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.