## ----setup, include=FALSE, cache=FALSE----------------------------------------
knitr::opts_chunk$set(
echo = TRUE,
message = TRUE,
warning = FALSE,
error = FALSE,
collapse = TRUE,
comment = NA,
R.options = list(width = 220),
dev.args = list(bg = 'transparent'),
dev = 'png',
fig.align = 'center',
out.width = '75%',
fig.asp = .75,
cache.rebuild = FALSE,
cache = FALSE
)
## ----loadbrms, echo=FALSE-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
brms_model <- mixedup:::brms_model
## ----mods, message=FALSE--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
library(lme4)
library(glmmTMB)
library(nlme)
library(brms)
library(mgcv)
lmer_model <-
lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
lme_model <-
lme(Reaction ~ Days, random = ~ 1 + Days | Subject, data = sleepstudy)
tmb_model <-
glmmTMB(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
# brms_model <-
# brm(Reaction ~ Days + (1 + Days | Subject),
# data = sleepstudy,
# cores = 4,
# refresh = -1,
# verbose = FALSE
# )
# this is akin to (1 | Subject) + (0 + Days | Subject) in lme4
mgcv_model <-
gam(
Reaction ~ Days +
s(Subject, bs = 're') +
s(Days, Subject, bs = 're'),
data = lme4::sleepstudy,
method = 'REML'
)
## ----results--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
library(mixedup)
summarize_model(lmer_model)
summarize_model(lme_model)
summarize_model(tmb_model)
summarize_model(brms_model)
summarize_model(mgcv_model)
## ----options--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
summarize_model(
lmer_model,
ci = FALSE,
cor_re = TRUE,
cor_fe = TRUE,
digits = 3
)
summarise_model(lmer_model, ci = FALSE)
## ----convergence, warning=FALSE-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# for some reason this example apparently only works interactively, not when knit
ss2 = sleepstudy
ss2$Days = ss2$Days * 10
lmer_not_converged <- lmer(
Reaction ~ Days + (Days|Subject),
data = ss2
)
# lmer_not_converged
lmer_converged <- converge_it(lmer_not_converged) # final result is a converged model
lmer_converged
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.