Description Usage Arguments Details Value See Also Examples
Plot 1d marginal effects from mgcv GAM model results.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | plot_gam(
model,
main_var,
conditional_data = NULL,
line_color = "#7B321C",
ribbon_color = "#28688640",
ncol = NULL,
nrow = NULL
)
plot_gam_1d(
model,
main_var,
conditional_data = NULL,
line_color = "#ff5500",
ribbon_color = "#00aaff"
)
plot_gam_multi1d(
model,
main_var,
conditional_data = NULL,
line_color = "#ff5500",
ribbon_color = "#00aaff",
ncol = ncol,
nrow = nrow
)
|
model |
The mgcv GAM. |
main_var |
Which variable do you want to plot? Uses bare variable names
and can take multiple variables via |
conditional_data |
This is the same as the newdata argument for predict. Supply a data frame with desired values of the model covariates. |
line_color |
The color of the fitted line. |
ribbon_color |
The color of the uncertainty interval around the line. |
ncol |
If plotting multiple smooths, these are passed to facet_wrap. |
nrow |
If plotting multiple smooths, these are passed to facet_wrap. |
This function is fairly 'no-frills' at the moment. Only 1d or multiple 1d smooths of numeric variables are able to be plotted. If conditional data is not supplied, it will be created by create_prediction_data, which defaults to means for numeric, most common category for categorical variables, and 500 observations. It currently will fail if you have a mix of 2d and 1d and do not specify a smooth.
a ggplot2 object of the effects of main_var.
Other model visualization:
plot_coefficients.brmsfit()
,
plot_coefficients.lm()
,
plot_coefficients.merMod()
,
plot_coefficients()
,
plot_gam_2d()
,
plot_gam_3d()
,
plot_gam_check()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | library(mgcv) # you don't need this function if you don't use this package
library(dplyr)
# example taken from the mgcv plot.gam help file.
set.seed(0)
## fake some data...
f1 <- function(x) {
exp(2 * x)
}
f2 <- function(x) {
0.2 * x ^ 11 * (10 * (1 - x)) ^ 6 + 10 * (10 * x) ^ 3 * (1 - x) ^ 10
}
f3 <- function(x) {
x * 0
}
n <- 200
sig2 <- 4
d = tibble(
x0 = rep(1:4, 50),
x1 = runif(n, 0, 1),
x2 = runif(n, 0, 1),
x3 = runif(n, 0, 1),
e = rnorm(n, 0, sqrt(sig2)),
y = 2 * x0 + f1(x1) + f2(x2) + f3(x3) + e
) %>%
mutate(x0 = factor(x0))
b <- gam(y ~ x0 + s(x1) + s(x2) + s(x3), data = d)
library(visibly)
plot_gam(b,
conditional_data = tibble(x2 = runif(500)),
main_var = x2)
plot_gam(b, main_var = x2)
plot_gam(b, main_var = vars(x2, x1))
plot_gam(b,
conditional_data = tibble(x1 = runif(500),
x2 = runif(500)),
main_var = vars(x2, x1))
# compare with mgcv plot
plot(b, pages=1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.