library(shellpipes)
library(dplyr)
loadEnvironments()
startGraphics()
set.seed(991)
## Simulate binary response with correlated predictors:
### Switch beta_xy to 0 and non-zero
simcorr <- function(N = 100
, beta_xy = 0
, beta_xz = 1
, beta_yz = 0.8) {
df <- data.frame(x=rnorm(N))
df <- (df
%>% mutate(y = rnorm(N) + beta_xy*x
, z_eta = rnorm(N, mean=1) + beta_xz*x + beta_yz*y
, z = rbinom(n(), 1, plogis(z_eta))
)
%>% select(-z_eta)
)
return(df)
}
N <- 500
sim_df_bin_corr <- simcorr(N = N, beta_xy=2)
head(sim_df_bin_corr)
sim_df_bin_noncorr <- simcorr(N = N, beta_xy=0)
head(sim_df_bin_noncorr)
## Observed marginals
observed_df_corr <- (sim_df_bin_corr
%>% summarise_all(mean)
)
observed_df_corr
observed_df_noncorr <- (sim_df_bin_noncorr
%>% summarise_all(mean)
)
observed_df_noncorr
saveVars(sim_df_bin_corr
, sim_df_bin_noncorr
, comparevarpred
, observed_df_corr
, observed_df_noncorr
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.