library(shellpipes)
library(vareffects); varefftheme()
library(ggpubr)
library(ggplot2)
library(ggthemes)
library(dplyr)
library(emmeans)
loadEnvironments()
startGraphics()
## Focal polynomial
### Predictions CIs
pred_age_non_cubic <- varpred(mod_cubic
, "age"
, steps=500
, isolate=FALSE
, modelname="Predictions"
)
### Effects CIs
pred_age_isolated_cubic <- varpred(mod_cubic
, "age"
, steps=500
, isolate=TRUE
, modelname="Effects"
)
pred_fit_mean <- getmeans(pred_age_isolated_cubic, what="estimate", modelname="Predicted mean")
print(pred_fit_mean)
## Colour limits
col_limits <- c("Data mean", "Predicted mean", "Effects", "Predictions")
### Combine
vlist <- list(pred_age_non_cubic, pred_age_isolated_cubic)
pred_age_cubic_df <- (comparevarpred(vlist=vlist
, lnames=NULL
, plotit=FALSE
, addmarginals=FALSE
)
)
pred_age_cubic_plots <- (ggplot(pred_age_cubic_df$preds, aes(x=age, y=fit))
+ geom_line(aes(linetype=model, colour=model), size=1, alpha=0.5)
+ geom_ribbon(aes(ymin=lwr, ymax=upr, fill=model), alpha=0.5)
+ geom_hline(data=true_prop_df, aes(yintercept=fit, colour=model, linetype="Data mean"))
+ geom_hline(data=pred_fit_mean, aes(yintercept=fit, colour=model, linetype=model))
+ scale_color_colorblind(limits=col_limits)
+ scale_fill_colorblind(limits=col_limits)
+ scale_linetype_discrete(limits=col_limits)
+ labs(title="A) Polynomial", y="Household size", linetype="Method", colour="Method", fill="Method")
)
print(pred_age_cubic_plots)
## Non-focal polynomial
### Predictions CIs
pred_wealthindex_non_cubic <- varpred(mod_cubic
, "wealthindex"
, isolate=FALSE
, modelname="Predictions"
)
### Effects CIs
pred_wealthindex_isolated_cubic <- varpred(mod_cubic
, "wealthindex"
, isolate=TRUE
, modelname="Effects"
)
pred_fit_mean <- getmeans(pred_wealthindex_isolated_cubic, what="estimate", modelname="Predicted mean")
print(pred_fit_mean)
### Combine
vlist <- list(pred_wealthindex_non_cubic, pred_wealthindex_isolated_cubic)
pred_wealthindex_cubic_df <- (comparevarpred(vlist=vlist
, lnames=NULL
, plotit=FALSE
, addmarginals=FALSE
)
)
pred_wealthindex_cubic_plots <- (ggplot(pred_wealthindex_cubic_df$preds, aes(x=wealthindex, y=fit))
+ geom_line(aes(linetype=model, colour=model), size=1, alpha=0.5)
+ geom_ribbon(aes(ymin=lwr, ymax=upr, fill=model), alpha=0.5)
+ geom_hline(data=true_prop_df, aes(yintercept=fit, colour=model, linetype="Data mean"))
+ geom_vline(aes(xintercept=mean(wealthindex)), lty=2)
+ geom_hline(data=pred_fit_mean, aes(yintercept=fit, colour=model, linetype=model))
+ scale_color_colorblind(limits=col_limits)
+ scale_fill_colorblind(limits=col_limits)
+ scale_linetype_discrete(limits=col_limits)
+ labs(title="B) Simple (linear)", y="Household size", linetype="Method", colour="Method", fill="Method")
)
print(pred_wealthindex_cubic_plots)
## Combine all prediction for faceting
pred_cubic_plots <- ggarrange(pred_age_cubic_plots
, pred_wealthindex_cubic_plots + rremove("ylab")
, common.legend=TRUE
, legend="bottom"
, ncol=2
)
print(pred_cubic_plots)
teeGG(pred_cubic_plots)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.