library(shellpipes)
library(vareffects); varefftheme()
library(ggpubr)
library(ggthemes)
library(ggplot2)
library(dplyr)
loadEnvironments()
startGraphics()
## Not mediated
### Not corrected
pred_notmediated_none <- varpred(mod_notmediated
, "x"
, bias.adjust="none"
, modelname="Mean-based"
)
pred_notmediated_none_mean <- getmeans(pred_notmediated_none, what="estimate")
### Bias corrected
pred_notmediated_pop <- varpred(mod_notmediated
, "x"
, bias.adjust="population"
, modelname="Observed-value-based"
)
pred_notmediated_pop_mean <- getmeans(pred_notmediated_pop, what="estimate")
summary(pred_notmediated_pop)
summary(pred_notmediated_pop$preds)
### Binned obs
binned_df <- binfun(mod_notmediated, focal="x", bins=50, groups=NULL)
summary(binned_df)
### Combine all predictions
vlist <- list(pred_notmediated_none, pred_notmediated_pop)
col_limits <- c("Data mean", "Mean-based", "Observed-value-based")
pred_notmediated_plots <- (comparevarpred(vlist=vlist
, lnames=NULL
, plotit=TRUE
, addmarginals=FALSE
, ci=FALSE
)
+ geom_hline(data=observed_df_med, aes(yintercept=z, colour=model, lty=model))
+ geom_hline(data=pred_notmediated_none_mean, aes(yintercept=fit, colour=model, lty=model))
+ geom_hline(data=pred_notmediated_pop_mean, aes(yintercept=fit, colour=model, lty=model))
+ geom_vline(data=observed_df_med, aes(xintercept=x), lty=2, col="black")
+ geom_point(data=binned_df, aes(x=x, y=z), colour="grey")
+ scale_color_colorblind(limits=col_limits)
+ scale_linetype_discrete(limits=col_limits)
+ labs(colour="Method", linetype="Method", title="A) Non-mediated", y="z")
+ theme(legend.position="bottom")
)
## Mediated
### Not corrected
pred_mediated_none <- varpred(mod_mediated
, "x"
, bias.adjust="none"
, modelname="Mean-based"
)
pred_mediated_none_mean <- getmeans(pred_mediated_none, what="estimate")
### Bias corrected
pred_mediated_pop <- varpred(mod_mediated
, "x"
, bias.adjust="population"
, modelname="Observed-value-based"
)
pred_mediated_pop_mean <- getmeans(pred_mediated_pop, what="estimate")
### Binned obs
binned_df <- binfun(mod_mediated, focal="x", bins=50, groups=NULL)
### Combine all predictions
vlist <- list(pred_mediated_none, pred_mediated_pop)
pred_mediated_plots <- (comparevarpred(vlist=vlist
, lnames=NULL
, plotit=TRUE
, addmarginals=FALSE
, ci=FALSE
)
+ geom_hline(data=observed_df_med, aes(yintercept=z, colour=model, lty=model))
+ geom_hline(data=pred_mediated_none_mean, aes(yintercept=fit, colour=model, lty=model))
+ geom_hline(data=pred_mediated_pop_mean, aes(yintercept=fit, colour=model, lty=model))
+ geom_vline(data=observed_df_med, aes(xintercept=x), lty=2, col="black")
+ geom_point(data=binned_df, aes(x=x, y=z), colour="grey")
+ scale_color_colorblind(limits=col_limits)
+ scale_linetype_discrete(limits=col_limits)
+ labs(colour="Method", linetype="Method", title="B) Mediated", y="z")
+ theme(legend.position="bottom")
)
pred_mediated_plots <- ggarrange(pred_notmediated_plots
, pred_mediated_plots + rremove("ylab")
, common.legend=TRUE
, legend="bottom"
, ncol=2
)
print(pred_mediated_plots)
teeGG(pred_mediated_plots)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.