library(shellpipes)
library(dplyr)
loadEnvironments()
set.seed(seed)
## Perfectly independent, normalized RVs (to perfectly match desired correlation, and probably partial correlations as well)
rx <- rnorm(N)
ry <- rnorm(N)
rw <- rnorm(N)
rz <- rnorm(N)
dy <- residuals(lm(ry~rx))
dw <- residuals(lm(rw~rx))
nx <- (rx-mean(rx))/sd(rx)
ny <- (dy-mean(dy))/sd(dy)
nw <- (dw-mean(dw))/sd(dw)
nz <- (rz-mean(rz))/sd(rz)
## Two main predictors (x and y) have a specified correlation (rho)
## w is completely uncorrelated with x
sim_df <- tibble(NULL
, x = nx+xbar
, y = rho*nx + sqrt(1-rho^2)*ny+ybar
, w = nw
, lc = b0 + bx*x + by*y + bw*w
, z = lc+nz
)
summary(sim_df)
with(sim_df, cor.test(x, y))
with(sim_df, cor.test(x, w))
saveVars(sim_df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.