When two different treatments are made in an assay, their combined effect may be
stronger or weaker than what would be expected with an additive model, the
treatments are said to be epistatic For sigmoidal dose-response models,
one treatment may effect of the other in two different ways; by either shifting
the maximal response (efficacy) or by shifting the dose needed to cause the
response (potency). A range of statistical models have been proposed that
capture different aspects of synergy, notably Bliss independence[@Bliss1956-hf]
and Loewe additivity[@Loewe1926-sr] models can be used to test for significant
efficacy or potency interactions, respectively. The SynergyFinder
R
package[@Ianevski2022-cb] and the synergy
python package[@Wooten2021-cr] can
be used to visualize treatment interactions, compute a range of synergy scores,
and test if the interactions are significant.
Recently Meyer et al.[@Meyer2019-zr,@Wooten2021-lg] derived an integrated
functional synergistic sigmoidal dose-response called the Multi-dimensional
Synergy of Combinations (MuSyC) method, which has the Loewe and Bliss models as
special cases. They implemented a Bayesian model-fitting strategy in Matlab
,
and a maximum likelihood model-fitting into the synergy python package. To make
the model more accessible to the pharmacology community, in this section, we
briefly review the MuSyC
functional form, describe a Bayesian implementation
in Stan
/BRMS
, and illustrate using the model to re-analyze how drugs and
voltage may interact to modulate the current through a potassium channel.
MuSyC Functional Form: The functional form for the MuSyC model gives an equation for the response $\color{brown}{E_d}$ at doses of $\color{teal}{d_1}$ and $\color{teal}{d_2}$ of the two treatments and has $9$ free parameters $\theta = \left({\color{purple}{C_1}}, {\color{purple}{C_2}}, {\color{brown}{E_0}}, {\color{brown}{E_1}}, {\color{brown}{E_2}}, {\color{brown}{E_3}}, {\color{purple}{h_1}}, {\color{purple}{h_2}}, {\color{purple}{\alpha}}\right)$
\begin{align} {\color{brown}{E_d}} = \mbox{MuSyC}({\color{teal}{d_1}}, {\color{teal}{d_2}}; \theta) &= \frac{ {\color{purple}{C_1}}^{\color{purple}{h_1}}{\color{purple}{C_2}}^{\color{purple}{h_2}}{\color{brown}{E_0}} + {\color{teal}{d_1}}^{\color{purple}{h_1}}{\color{purple}{C_2}}^{\color{purple}{h_2}}{\color{brown}{E_1}} + {\color{purple}{C_1}}^{\color{purple}{h_1}}{\color{teal}{d_2}}^{\color{purple}{h_2}}{\color{brown}{E_2}} + {\color{teal}{d_1}}^{\color{purple}{h_1}}{\color{teal}{d_2}}^{\color{purple}{h_2}}{\color{purple}{\alpha}} {\color{brown}{E_3}} }{ {\color{purple}{C_1}}^{\color{purple}{h_1}}{\color{purple}{C_2}}^{\color{purple}{h_2}} + {\color{teal}{d_1}}^{\color{purple}{h_1}}{\color{purple}{C_2}}^{\color{purple}{h_2}} + {\color{purple}{C_1}}^{\color{purple}{h_1}}{\color{teal}{d_2}}^{\color{purple}{h_2}} + {\color{teal}{d_1}}^{\color{purple}{h_1}}{\color{teal}{d_2}}^{\color{purple}{h_2}}{\color{purple}{\alpha}}} \end{align} The parameters $\color{brown}{E_0}$, $\color{brown}{E_3}$, give response values for the extreme values for the doses: $\mbox{MuSyC}({\color{teal}{0}}, {\color{teal}{0}}; \theta) = \color{brown}{E_0}$ and $\mbox{MuSyC}({\color{teal}{\infty}}, {\color{teal}{\infty}}; \theta) = \color{brown}{E_3}$. Setting one of the doses to zero e.g., ${\color{teal}{d_2}} = 0$, the MuSyC functional form reduces to a sigmoid function of the other, where $\mbox{MuSyC}({\color{teal}{d_1}}, {\color{teal}{0}}; \theta) = Sigmoid({\color{teal}{d_1}}; \phi)$, where the half maximal activity is $\mbox{AC}_{50} = \color{purple}{C_1}$ and the slope at the half maximal activity is ${\color{purple}{\mbox{hill}}} = {\color{purple}{h_1}}$ and if $h_1 > 0$, then ${\color{brown}{\mbox{top}}} = {\color{brown}{E_1}}$ and ${\color{brown}{\mbox{bottom}}} = {\color{brown}{E_0}}$, otherwise the assignment is reversed. See Appendix XXX for a derivation.
To interpret these parameters if we set $\color{teal}{d_2}=0$, then \begin{align} \color{brown}{E_d} &= \frac{ {\color{purple}{C_1}}^{\color{purple}{h_1}}{\color{brown}{E_0}} + {\color{teal}{d_1}}^{\color{purple}{h_1}}{\color{brown}{E_1}} }{ {\color{purple}{C_1}}^{\color{purple}{h_1}} + {\color{teal}{d_1}}^{\color{purple}{h_1}}} \end{align} which is the Hill equation, which we modeled above \ref{sec:hill}. If we then additionally set $\color{teal}{d_1}=0$ then $\color{brown}{E_d}=\color{brown}{E_0}$, in the limit as ${\color{teal}{d_1}}\rightarrow \infty$ then ${\color{brown}{E_d}}\rightarrow {\color{brown}{E_1}}$, and if ${\color{teal}{d_1}}=\color{purple}{C_1}$ then ${\color{brown}{E_d}} = ({\color{brown}{E_0}} + {\color{brown}{E_2}})/2$, which is the half maximal response (either the $\color{brown}{\mbox{IC}{50}}$ if treatment $1$ is an inhibitor or $\color{brown}{\mbox{EC}{50}}$ if treatment $1$ is agonist). The slope at ${\color{teal}{d_1}}={\color{purple}{C_1}}$ is \begin{align} \frac{\mathrm{d}\;\color{brown}{E_d}}{\mathrm{d}\color{teal}{d_1}} &= {\color{purple}{C_1}}^{v}{\color{brown}{E_0}} \frac{\mathrm{d}}{\mathrm{d}\color{teal}{d_1}} \frac{1}{{\color{purple}{C_1}}^{\color{purple}{h_1}} + {\color{teal}{d_1}}^{\color{purple}{h_1}}} + {\color{brown}{E_1}} \frac{\mathrm{d}}{\mathrm{d}\color{teal}{d_1}} \frac{{\color{teal}{d_1}}^{h_1}}{{\color{purple}{C_1}}^{\color{purple}{h_1}} + {\color{teal}{d_1}}^{\color{purple}{h_1}}}\ &= {\color{purple}{C_1}}^{h_1}{\color{brown}{E_0}} \frac{ h_1{\color{teal}{d_1}}^{{\color{purple}{h_1}}-1}}{\left({\color{purple}{C_1}}^{\color{purple}{h_1}} + {\color{teal}{d_1}}^{\color{purple}{h_1}}\right)^2} + {\color{brown}{E_1}} \frac{{\color{purple}{C_1}}^{\color{purple}{h_1}}h_1{\color{teal}{d_1}}^{{\color{purple}{h_1}}-1}}{\left({\color{purple}{C_1}}^{\color{purple}{h_1}} + {\color{teal}{d_1}}^{\color{purple}{h_1}}\right)^2}\ &= ({\color{brown}{E_0}} + {\color{brown}{E_1}}) \end{align}
The evaluation of the functional form for ${\color{brown}{E_d}}$ is numerically unstable due to the exponentiation. To transform using the $\texttt{log-sum-exp}$ trick, let
\begin{align} \texttt{numerator_parts} = [\ &{\color{purple}{h_1}}\log({\color{purple}{C_1}}) + {\color{purple}{h_2}}\log({\color{purple}{C_2}}) + \log({\color{brown}{E_0}}),\ &{\color{purple}{h_1}}\log({\color{teal}{d_1}}) + {\color{purple}{h_2}}\log({\color{purple}{C_2}}) + \log({\color{brown}{E_1}}),\ &{\color{purple}{h_1}}\log({\color{purple}{C_1}}) + {\color{purple}{h_2}}\log({\color{teal}{d_2}}) + \log({\color{brown}{E_2}}),\ &{\color{purple}{h_1}}\log({\color{teal}{d_1}}) + {\color{purple}{h_2}}\log({\color{teal}{d_2}}) + \log({\color{brown}{E_3}}) + \log({\color{purple}{\alpha}}) ]\ \texttt{denominator_parts} = [\ &{\color{purple}{h_1}}\log({\color{purple}{C_1}}) + {\color{purple}{h_2}}\log({\color{purple}{C_2}}),\ &{\color{purple}{h_1}}\log({\color{teal}{d_1}}) + {\color{purple}{h_2}}\log({\color{purple}{C_2}}),\ &{\color{purple}{h_1}}\log({\color{purple}{C_1}}) + {\color{purple}{h_2}}\log({\color{teal}{d_2}}),\ &{\color{purple}{h_1}}\log({\color{teal}{d_1}}) + {\color{purple}{h_2}}\log({\color{teal}{d_2}})]\ \end{align} Then for a vector $x = [x_1, x_2, \dots, x_n]$, let $\texttt{log_sum_exp}(x) = \mbox{log}\left(\mbox{exp}(x_1) + \mbox{exp}(x_2) + \dots + \mbox{exp}(x_n)\right)$. Then
$$ {\color{brown}{E_d}} = \mbox{exp}!\left(\texttt{log-sum-exp}(\texttt{numerator_parts}) - \texttt{log-sum-exp}(\texttt{denominator_parts})\right). $$ To implement the $\mbox{MuSyC}$ model in Stan we use the following parameterization.
\scriptsize
# the brms MuSyC formula with given covariates synergy_formula <- MuSyC_formula(predictors = covariates) # will generate a formula like this synergy_formula_alt <- brms::brmsformula( # The Stan MuSyC function is defined in BayesPharma::MuSyC_stanvar() response ~ MuSyC( logd1 - logd1scale, logd2 - logd2scale, logE0, logC1, logE1, h1, logC2, logE2, h2, logE3, logalpha), nl = TRUE) + # The free parameters are regressed against the given covariates brms::lf(logE0 ~ covariates) + brms::lf(logC1 + logE1 + h1 ~ covariates) + brms::lf(logC2 + logE2 + h2 ~ covariates) + brms::lf(logE3 + logalpha ~ covariates)
\normalsize
Note that if the logd1scale
and logd1scale
values are not provided in the
the data, when the model is run, they are automatically computed as the mean
value of the doses and is used to make the model easier to fit.
#' Drug Synergy #' MuSyC Drug Synergy model #' #' Assume that the response metric decreases with more effective drugs #' Let E3 be the effect at the maximum concentration of both drugs #' #' #' Special cases: #' * dose additive model: alpha1 = alpha2 = 0 #' * loewe: h1 = h2 = 1 #' * CI: E0 = 1, E1 = E2 = E3 = 0 #' the drug effect is equated with percent inhibition #' * bliss drug independence model: #' E0 = 1, E1 = E2 = E3 = 0, alpha1 = alpha2 = 1 #' @param d1 Dose of drug 1 #' @param d2 Dose of drug 2 #' #' @param E0 effect with no drug treatment #' #' # params for drug 1 by it self #' @param s1 drug 1 hill slope #' @param C1 drug 1 EC50 #' @param E1 drug 1 maximum effect #' #' # params for drug 2 by it self #' @param s2 drug 2 hill slope #' @param C2 drug 2 EC50 #' @param E2 drug 2 maximum effect #' #' @param beta synergistic efficacy #' percent increase in a drug combination's effect #' beyond the most efficacious single drug. #' #' beta > 0 => synergistic efficacy #' the effect at the maximum concentration of both drugs (E3) exceeds the #' maximum effect of either drug alone (E1 or E2) #' #' beta \< 0 => antagonistic efficacy #' at least one or both drugs are more efficacious as #' single agents than in combination #' #' @param alpha1 synergistic potency #' how the effective dose of drug 1 #' is altered by the presence of drug 2 #' @param alpha2 synergistic potency #' how the effective dose of drug 2 #' is altered by the presence of drug 1 #' #' alpha > 1 => synergistic potency #' the EC50 decreases because of the addition of the other drug, #' corresponding to an increase in potency #' #' 0 \<= alpha \< 1 => antagonistic potency #' the EC50 of the drug increases as a result of the other drug, #' corresponding to a decrease in potency #' #' alpha1 == alpha2 if detailed balance #' @export generate_MuSyC_effects \<- function( d1, d2, E0, s1, C1, E1, s2, C2, E2, alpha, E3) { h1 \<- MuSyC_si_to_hi(s1, C1, E0, E1) h2 \<- MuSyC_si_to_hi(s2, C2, E0, E2) numerator \<- C1\^h1 * C2\^h2 * E0 + d1\^h1 * C2\^h2 * E1 + C1\^h1 * d2\^h2 * E2 + d1\^h1 * d2\^h2 * E3 * alpha denominator \<- C1\^h1 * C2\^h2 + d1\^h1 * C2\^h2 + C1\^h1 * d2\^h2 + d1\^h1 * d2\^h2 * alpha numerator / denominator }
#' Create a formula for the MuSyC synergy model #' #' @description setup a defaulMuSyC synergy model formula to predict #' the E0
, C1
, E1
, s1
, C2
, E2
, s2
, log10alpha
, and E3alpha
#' parameters. #' #' @param predictors Additional formula objects to specify predictors of #' non-linear parameters. i.e. what perturbations/experimental differences #' should be modeled separately? (Default: 1) should a random effect be taken #' into consideration? i.e. cell number, plate number, etc. #' @return brmsformula #' #' @examples #'\dontrun{
predictors
.MuSyC_formula(predictors = 0 + predictors)
MuSyC_formula(predictors = 0 + predictors + (1|cell_ID))
predictor_eq <- rlang::new_formula( lhs = quote(E0 + C1 + E1 + s1 + C2 + E2 + s2 + log10alpha + E3alpha), rhs = rlang::enexpr(predictors)) brms::brmsformula( response ~ (C1^h1 * C2^h2 * E0 + d1^h1 * C2^h2 * E1 + C1^h1 * d2^h2 * E2 + d1^h1 * d2^h2 * E3alpha ) / ( C1^h1 * C2^h2 + d1^h1 * C2^h2 + C1^h1 * d2^h2 + d1^h1 * d2^h2 * 10^log10alpha), brms::nlf(d1 ~ dose1 / d1_scale_factor), brms::nlf(d2 ~ dose2 / d2_scale_factor), brms::nlf(h1 ~ s1 * (4 * C1) / (E0 + E1)), brms::nlf(h2 ~ s2 * (4 * C2) / (E0 + E2)), predictors_eq, nl = TRUE, ...)
}
#' Fit the MuSyC synergy model by dose #' #' @param data data.frame of experimental data #' with columns: dose1, dose2, n_positive, count, [
if (is.data.frame(well_scores)) { grouped_data \<- well_scores \|> dplyr::group_by(!!!group_vars) \|> dplyr::mutate( d1_scale_factor = max(dose1), d2_scale_factor = max(dose2)) \|> tidyr::nest() \|> dplyr::ungroup() }
if (verbose) { cat("Fitting MuSyC model\n") }
model \<- brms::brm_multiple( formula = formula, data = grouped_data\$data, family = binomial("identity"), prior = prior, init = init, # stanvars = c( # brms::stanvar( # scode = " real d1_scale_factor = max(dose1));", # block ="tdata", # position = "end"), # brms::stanvar( # scode = " real d2_scale_factor = max(dose2));", # block ="tdata", # position = "end"), # brms::stanvar( # scode = " real drug1_IC50 = b_C1 * d1_scale_factor);", # block ="genquant", # position = "end"), # brms::stanvar( # scode = " real drug2_IC50 = b_C2 * d2_scale_factor;", # block ="genquant", # position = "end")), combine = FALSE, data2 = NULL, iter = iter, cores = cores, stan_model_args = stan_model_args, control = control, ...)
if (!is.null(model_evaluation_criteria)) { # evaluate fits model \<- model \|> purrr::imap(function(model, i) { group_index \<- grouped_data[i, ] \|> dplyr::select(-data) group_index_label \<- paste0( names(group_index), ":", group_index, collapse = ",") cat("Evaluating model fit for", group_index_label, "...\n", sep = "") model \<- model \|> brms::add_criterion( criterion = model_evaluation_criteria, model_name = paste0("MuSyC:", group_index_label), reloo = TRUE) model }) } grouped_data \|> dplyr::mutate( model = model) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.