View source: R/plot-posterior-predictive-check.R
plot_pp_check | R Documentation |
Given a brms model, perform a graphical posterior predictive check (PPC).
brms::pp_check()
has different plot types to analyze the model fit by
comparing the observed data with generated data from the model.
Here is the documentation for brms::pp_check: http://paul-buerkner.github.io/brms/reference/pp_check.brmsfit.html
Here is the documentation for bayesplot::pp_check plot types under PPC plotting functions: https://mc-stan.org/bayesplot/reference/PPC-overview.html
plot_pp_check(model, plot_type = "dens_overlay", n = 50, ...)
model |
brms::brmsfit model. |
plot_type |
|
n |
|
... |
additional arguments to |
ggplot2::ggplot object.
## Not run:
# Consider a dose response model with the plot type being 10 box plots
BayesPharma::plot_pp_check(
model = my_dose_response_model,
plot_type = "box_plot",
n = 10)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.