Description Usage Arguments Value Examples
Given a vector of cluster numbers and projection clustering output, postPairs
calculate the posterior probability of any pair of subjects being clustered in the
same group.
1 2 3 4 5 6 7 8 9 10 11 12 | postPairs(
df_of_draws,
x_var,
id_var = "ID",
dat,
ls_idxA,
nIter = 10,
nDraw = 1000,
nClusters,
regQ = 1e-06,
seed = 1
)
|
df_of_draws |
Data frame of simulated LMM output |
x_var |
Character vector of random effect variables |
id_var |
Character of id variable |
dat |
Longitudinal data input |
ls_idxA |
List of random effect indices to project on |
nIter |
Number of iterations used in clustering optimization |
nDraw |
Number of draws to sample from projection clustering output |
nClusters |
Vector of cluster numbers |
regQ |
Positive regularization value to add to the diagonal of matrix to be inverted |
seed |
Random seed to initialize cluster centers |
List of 2 items.
ls_prob: pairwise probability tables corresponding to random effect projection
specified in ls_idxA
. Row and column index of table indicate subject
ID number in dat
. Only the lower triangular matrix is filled.
arr_cluster: array of optimized cluster labels based on randomly drawn samples
corresponding to chosen random effects.
1 2 3 4 5 6 7 8 9 | data(df_of_draws)
ls_idxA <- list(
seq(10),
1:4,
5:7,
8:10
)
out_pc <- postPairs(df_of_draws, x_var=paste0("Z", 1:10), id_var="ID", dat=DATASET,
ls_idxA, nIter=10, nDraw=2, nClusters=4, regQ=1e-6, seed=1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.