Description Usage Arguments Details Value
View source: R/AUC_Lagrange_Cjp_coefficients.R
This function calculate the time-dependent coefficients Cjp involved in the calculation of the are under the curve when the Lagrange interpolation method is used.
1 | AUC_Lagrange_Cjp_coefficients(ind_j,ind_p,t)
|
ind_j |
a numerical scalar indicating the value of the index j. |
ind_p |
a numerical scalar indicating the value of the index p |
t |
a numerical vector of time points (x-axis coordinates) to consider for the AUC calculation. |
The coefficients \mjteqnC_jpC_jpC_jp involved in the calculation of the AUC are defined as
\mjtdeqnC_2p = (t_2-t_1)\prod_l=0 ;\ l\neq p^P=2 t_1+l - \frac(t_2^2-t_1^2)2\sum_l=0 ;\ l\neq p^P=2 t_1+l + \frac(t_2^3-t_1^3)3 C_2p = (t_2-t_1)\prod_l=0 ;\ l\neq p^P=2 t_1+l - \frac(t_2^2-t_1^2)2\sum_l=0 ;\ l\neq p^P=2 t_1+l + \frac(t_2^3-t_1^3)3 C_2p = (t_2-t_1)\prod_l=0 ;\ l\neq p^P=2 t_1+l - \frac(t_2^2-t_1^2)2\sum_l=0 ;\ l\neq p^P=2 t_1+l + \frac(t_2^3-t_1^3)3
\mjtdeqnC_mp = (t_m-t_m-1)\prod_l=0 ;\ l\neq p^P=2 t_m-2+l - \frac(t_m^2-t_m-1^2)2\sum_l=0 ;\ l\neq p^P=2 t_m-2+l + \frac(t_m^3-t_m-1^3)3 C_mp = (t_m-t_m-1)\prod_l=0 ;\ l\neq p^P=2 t_m-2+l - \frac(t_m^2-t_m-1^2)2\sum_l=0 ;\ l\neq p^P=2 t_m-2+l + \frac(t_m^3-t_m-1^3)3 C_mp = (t_m-t_m-1)\prod_l=0 ;\ l\neq p^P=2 t_m-2+l - \frac(t_m^2-t_m-1^2)2\sum_l=0 ;\ l\neq p^P=2 t_m-2+l + \frac(t_m^3-t_m-1^3)3
\mjtdeqnC_jp = -(t_j-t_j-1)\prod_l=0 ;\ l\neq p^P=3 t_j-2+l + \frac(t_j^2-t_j-1^2)2\sum_l_1=0 ;\ l_1\neq p^P-1=2\sum_l_2=l_1+1 ;\ l_2\neq p^P=3t_j-2+l_1\cdot t_j-2+l_2 - C_jp = -(t_j-t_j-1)\prod_l=0 ;\ l\neq p^P=3 t_j-2+l + \frac(t_j^2-t_j-1^2)2\sum_l_1=0 ;\ l_1\neq p^P-1=2\sum_l_2=l_1+1 ;\ l_2\neq p^P=3t_j-2+l_1\cdot t_j-2+l_2 - C_jp = -(t_j-t_j-1)\prod_l=0 ;\ l\neq p^P=3 t_j-2+l + \frac(t_j^2-t_j-1^2)2\sum_l_1=0 ;\ l_1\neq p^P-1=2\sum_l_2=l_1+1 ;\ l_2\neq p^P=3t_j-2+l_1\cdot t_j-2+l_2 -
\mjtdeqn\frac(t_j^3-t_j-1^3)3 \sum_l=0 ;\ l\neq p^P=3 t_j-2+l + \frac(t_j^4-t_j-1^4)4\frac(t_j^3-t_j-1^3)3 \sum_l=0 ;\ l\neq p^P=3 t_j-2+l + \frac(t_j^4-t_j-1^4)4\frac(t_j^3-t_j-1^3)3 \sum_l=0 ;\ l\neq p^P=3 t_j-2+l + \frac(t_j^4-t_j-1^4)4
where \mjteqnmmm is the number of time points in the vector t
.
a numerical scalar corresponding to the coefficient \mjteqnC_jpC_jpC_jp evaluated for j = ind_j
and p = ind_p
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.