Description Usage Arguments Value See Also Examples
View source: R/Group_specific_Var_Delta_AUC_estimation.R
This function calculates the variance of the difference of area under the curve of two marginal dynamics modeled by group-structured polynomials or B-spline curve in Mixed-Effects models.
1 2 3 4 5 6 | Group_specific_Var_Delta_AUC_estimation(
MEM_Pol_group,Group1,Group2,
time.G1,time.G2,common.interval = TRUE,
method = "trapezoid",Group.dependence = TRUE,
Averaged = FALSE
)
|
MEM_Pol_group |
A list with similar structure than the output provided by the function MEM_Polynomial_Group_structure. A list containing:
|
Group1 |
a character scalar indicating the name of the first group whose marginal dynamics must be considered. This group name must belong to the set of groups involved in the MEM (see |
Group2 |
a character scalar indicating the name of the second group whose marginal dynamics must be considered. This group name must belong to the set of groups involved in the MEM (see |
time.G1 |
a numerical vector of time points (x-axis coordinates) to use for the variance of the Group1 AUC calculation. |
time.G2 |
a numerical vector of time points (x-axis coordinates) to use for the variance of the Group2 AUC calculation. |
common.interval |
a logical scalar. If FALSE, the variance of difference of AUC is calculated as the variance of the difference of AUCs where the AUC of each group is calculated on its specific interval of time. If TRUE (default), the variance is estimated on a common interval of time defined as the intersect of the two group-specific interval (see Group_specific_Delta_AUC_estimation for more details about calculation.). |
method |
a character scalar indicating the interpolation method to use to estimate the AUC. Options are 'trapezoid' (default), 'lagrange' and 'spline'. In this version, the 'spline' interpolation is implemented with "not-a-knot" spline boundary conditions. |
Group.dependence |
a logical scalar indicating whether the two groups, whose the difference of AUC (\mjteqn\Delta AUC\Delta AUC\Delta AUC) is studied, are considered as dependent. By default, this variable is defined as TRUE. |
Averaged |
a logical scalar. If TRUE, the function return the difference of normalized AUC (nAUC) where nAUC is computed as the AUC divided by the range of time of calculation. If FALSE (default), the classic AUC is calculated. |
A numerical scalar corresponding to the variance of the difference of AUC (\mjteqn\Delta AUC\Delta AUC\Delta AUC) between the Group1 and the Group2. If the two groups are considered as dependent (Group.dependence
=TRUE), the variance of \mjteqn\Delta AUC\Delta AUC\Delta AUC is calculated as \mjteqnVar(AUC_1) + Var(AUC_2) - 2Cov(AUC_1,AUC_2)Var(AUC_1) + Var(AUC_2) - 2Cov(AUC_1,AUC_2)Var(AUC_1) + Var(AUC_2) - 2Cov(AUC_1,AUC_2). Otherwise, only the sum of the two variance is used.
bs
,
Group_specific_Var_AUC_estimation
,
MEM_Polynomial_Group_structure
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | # Download of data
data("HIV_Simu_Dataset_Delta01_cens")
data <- HIV_Simu_Dataset_Delta01_cens
# Change factors in character vectors
data$id <- as.character(data$id) ; data$Group <- as.character(data$Group)
# Example 1: We consider the variable \code{MEM_Pol_Group} as the output of our function
# \link[AUCcomparison]{MEM_Polynomial_Group_structure}
MEM_estimation <- MEM_Polynomial_Group_structure(y=data$VL,x=data$time,Group=data$Group,
Id=data$id,Cens=data$cens)
time_group1 <- unique(data$time[which(data$Group=="Group1")])
time_group2 <- unique(data$time[which(data$Group=="Group2")])
Var_Delta_AUC_estimation <- Group_specific_Var_Delta_AUC_estimation(
MEM_Pol_group=MEM_estimation,
Group1="Group1",Group2="Group2",
time.G1=time_group1,time.G2=time_group2)
# Example 2: We consider results of MEM estimation from another source.
# We have to give build the variable 'MEM_Pol_group' with the good structure
# We build the variable 'MEM_Pol_group.1' with the results of MEM estimation obtained for 2 groups
# Generation of random matrix
Covariance_Matrix_1 <- matrix(rnorm(7*7,mean=0,sd=0.01),ncol=7,nrow=7)
# Transform the matrix into symmetric one
Covariance_Matrix_1 <- Covariance_Matrix_1 %*% t(Covariance_Matrix_1)
MEM_Pol_group.1 <- list(Model_estimation=Covariance_Matrix_1,
Model_features=list(Groups=c("Group1","Group2"),
Marginal.dyn.feature=list(dynamic.type="polynomial",
intercept=c(global.intercept=TRUE,
group.intercept1=FALSE,group.intercept2=FALSE),
polynomial.degree=c(3,3))))
Var_Delta_AUC_estimation_2 <- Group_specific_Var_Delta_AUC_estimation(
MEM_Pol_group=MEM_Pol_group.1,
Group1="Group1",Group2="Group2",
time.G1=time_group1,time.G2=time_group2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.