Description Slots Author(s) See Also Examples
dmSQTLfit extends the dmSQTLprecision
class by adding
the full model Dirichlet-multinomial (DM) likelihoods,
regression coefficients and feature proportion estimates needed for the
transcript/exon usage QTL analysis. Full model is defined by the genotype of
a SNP associated with a gene. Estimation takes place for all the genes and
all the SNPs/blocks assigned to the genes. Result of dmFit
.
fit_full
List of MatrixList
objects containing
estimated feature ratios in each sample based on the full
Dirichlet-multinomial (DM) model.
lik_full
List of numeric vectors of the per gene DM full model likelihoods.
coef_full
MatrixList
with the regression
coefficients based on the DM model.
Malgorzata Nowicka
dmSQTLdata
,
dmSQTLprecision
, dmSQTLtest
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | # --------------------------------------------------------------------------
# Create dmSQTLdata object
# --------------------------------------------------------------------------
# Use subsets of data defined in the GeuvadisTranscriptExpr package
library(GeuvadisTranscriptExpr)
geuv_counts <- GeuvadisTranscriptExpr::counts
geuv_genotypes <- GeuvadisTranscriptExpr::genotypes
geuv_gene_ranges <- GeuvadisTranscriptExpr::gene_ranges
geuv_snp_ranges <- GeuvadisTranscriptExpr::snp_ranges
colnames(geuv_counts)[c(1,2)] <- c("feature_id", "gene_id")
colnames(geuv_genotypes)[4] <- "snp_id"
geuv_samples <- data.frame(sample_id = colnames(geuv_counts)[-c(1,2)])
d <- dmSQTLdata(counts = geuv_counts, gene_ranges = geuv_gene_ranges,
genotypes = geuv_genotypes, snp_ranges = geuv_snp_ranges,
samples = geuv_samples, window = 5e3)
# --------------------------------------------------------------------------
# sQTL analysis - simple group comparison
# --------------------------------------------------------------------------
## Filtering
d <- dmFilter(d, min_samps_gene_expr = 70, min_samps_feature_expr = 5,
minor_allele_freq = 5, min_gene_expr = 10, min_feature_expr = 10)
plotData(d)
## To make the analysis reproducible
set.seed(123)
## Calculate precision
d <- dmPrecision(d)
plotPrecision(d)
## Fit full model proportions
d <- dmFit(d)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.