rm(list = ls())
data(ABdata, package = "pdynmc")
dat <- ABdata
rm(ABdata)
dat[,c(4:7)] <- log(dat[,c(4:7)])
library(pdynmc)
## Arellano and Bond (1991) estimation in Table 4, column (a1)
m1 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "none")
summary(m1)
## Arellano and Bond (1991) estimation in Table 4, column (a2)
m2 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
w.mat = "iid.err", std.err = "corrected", estimation = "twostep",
opt.meth = "none")
summary(m2)
## Arellano and Bond (1991) twostep estimation extended by nonlinear moment
## conditions
m3 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
w.mat = "iid.err", std.err = "corrected", estimation = "twostep",
opt.meth = "BFGS")
summary(m3)
## Arellano and Bond (1991) iterative estimation extended by nonlinear moment
## conditions
m4 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = TRUE,
include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
w.mat = "iid.err", std.err = "corrected", estimation = "iterative",
max.iter = 4, opt.meth = "BFGS")
summary(m4)
## Arellano and Bond (1991) twostep estimation extended by linear moment
## conditions from equations in levels
m5 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
use.mc.diff = TRUE, use.mc.lev = TRUE, use.mc.nonlin = FALSE,
include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
w.mat = "iid.err", std.err = "corrected", estimation = "twostep",
opt.meth = "none")
summary(m5)
ls()[grepl(ls(), pattern = "m")]
length(ls()[grepl(ls(), pattern = "m")]) # 5 configurations are estimated
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.