Description Usage Arguments References Examples
Fit a GEV distribution on annual maxima using the generalized
maximum likelihood method with Beta prior.
The output is of the class amax. See FitAmax.
Asymptotic result are computed like the maximum likelihood approach.
1 2 |
x |
Data. |
varcov |
Logical. Should the covariance matrix be returned. |
mu, sig2 |
Mean and variance of the Beta prior. |
method.optim |
Optimisation method used by |
... |
Other parameter pass to |
Martins, E.S., Stedinger, J.R., 2000. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 36, 737–744. https://doi.org/10.1029/1999WR900330
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | x <- ExtractAmax(flow~date, flowStJohn)$flow
## Using the default physiographic prior.
fit <- FitGev(x)
print(fit)
coef(fit)
vcov(fit)
predict(fit, ci = 'delta')
## A uniform prior on interlval -0.5 to 0.5 can be used to approximate
## the maximum likelihood estimate.
AIC(FitAmax(x, distr = 'gev', method ='mle'))
AIC(FitGev(x, mu = 0, sig2 = 1/12))
## A regional study can be performed by using an empirical prior
## Here 20 sites with the same GEV distribution are simulated
## without priors.
## Then a regional estimate is obtained using an empirical prior
xmat <- replicate(20, rAmax(20, c(100,3, -.1), 'gev') )
flist <- apply(xmat,2, FitAmax, distr = 'gev', varcov = FALSE)
pmat <- sapply(flist, getElement,'para')
kap0 <- pmin(.5,pmax(-.5,pmat[3,]))
FitGev(xmat[,1], mu = mean(kap0), sig2 = var(kap0))
FitAmax(xmat[,1], distr = 'gev', method = 'mle')
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.