#' Prepare data for the cultural distance and effect size comparison plot
#'
#' This function ...
#'
#' @param data datatable to be plotted
#' @param study_name name of the study, either study1a, study1b, study2a, or study2b
#'
#' @return The function returns a datatable ready to be plotted.
#' @export
prepare_plot_data_country_means <- function(data, study_type) {
response_cols <-
switch(study_type,
"trolley" = c("trolley_1_rate", "trolley_2_rate", "trolley_3_rate", "trolley_4_rate", "trolley_5_rate", "trolley_6_rate"),
"speedboat" = c("speedboat_1_rate", "speedboat_2_rate", "speedboat_3_rate", "speedboat_4_rate", "speedboat_5_rate", "speedboat_6_rate"))
data %>%
dplyr::select(country3, Region, tidyselect::all_of(response_cols)) %>%
tidyr::pivot_longer(matches("_rate"), names_to = "condition", names_pattern = "(.*)_rate", values_to = "rate", values_drop_na = TRUE) %>%
tidyr::nest(data = c(condition, rate)) %>%
dplyr::left_join(., select(cultural_distance, Collectivism, country3), by = "country3") %>%
dplyr::mutate(N = map_int(data, nrow)) %>%
dplyr::mutate(mean = dplyr::if_else(N >= 10,
purrr::map_dbl(data,
~ mean(.x$rate, na.rm=T)),
NA_real_)) %>%
dplyr::rename(country = country3) %>%
dplyr::select(-data) %>%
tidyr::drop_na(Collectivism, mean)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.