## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
warning=FALSE,
message=FALSE,
comment = "#>"
)
## ---- echo = FALSE,hide=TRUE, message=FALSE,warning=FALSE---------------------
devtools::load_all(".")
## ----message=FALSE, warning=FALSE, include=FALSE------------------------------
library(dplyr)
library(DT)
library(ggplot2)
library(stringr)
library(ggpubr)
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
# patient<-MMRF_CoMMpass_IA15_PER_PATIENT
#
# trt<-MMRF_CoMMpass_IA15_STAND_ALONE_TRTRESP
#
# variant.ann<-MMRF_CoMMpass_IA15a_All_Canonical_Variants
#
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
# variants.plot.all<-MMRFVariant_PlotVariantsbyGene(variant.ann,height=10, width=20,topN=10,
#
# filenm="PlotVariantsbyGene_heatmapAll")
#
## ----figurename="PlotVariantsbyGene_heatmap", echo=FALSE, fig.cap="Heatmap of the N# of variants occurrence in the complete cohort", out.width = '90%'----
knitr::include_graphics("imgs/PlotVariantsbyGene_heatmap_all.png")
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
# ListSNPs.all<-MMRFVariant_GetVariantsbyGene(variant.ann)
#
#
# ListSNPs.all<-ListSNPs.all[order(ListSNPs.all$count, decreasing = TRUE),]
#
# ListSNPs.all.10<-head(unique(ListSNPs.all),10)
#
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
datatable(as.data.frame(ListSNPs.all.10),
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE)
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
#
# impact.table.all<-MMRFVariant_GetImpact(variant.ann,ListSNPs.all$dbSNP)
#
# impact.table.all.sub<-dplyr::select(impact.table.all,dbSNP,Gene,REF,ALT,feature,Effect,
# SIFT_Impact,Polyphen_Impact,Impact)
#
# head(unique(impact.table.all.sub),10)
#
#
## ----figurename="ImpactTableAll", echo=FALSE, fig.cap="Impact table of each SNP in ListGene", out.width = '90%'----
knitr::include_graphics("imgs/ImpactTableAll.png")
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
#
# ListSNPs.all.100<-head(ListSNPs.bycount.all$dbSNP,100)
#
# plot.impact.effect.all<-MMRFVariant_PlotbyEffectImpact(variant.ann,ListSNPs.all.100,topN=3,height=20,
# width=30, filenm="PlotbyEffectImpactAll")
#
## ----figurename="ImpactTableAll", echo=FALSE, fig.cap="Impact table of each SNP in ListGene", out.width = '90%'----
knitr::include_graphics("imgs/PlotbyEffectImpactAll.png")
## ----figurename="workflow", echo=FALSE, fig.cap="The workflow describes graphically step by step the procedure carried out to perform this case of study ", out.width = '99%'----
knitr::include_graphics("imgs/workflow.png")
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
# ListGene<-c("KRAS", "NRAS","TP53","FAM46C","DIS3","BRAF")
#
#
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
#
# variants.plot<-MMRFVariant_PlotVariantsbyGene(variant.ann,ListGene,height=15,
# width=20,topN=50,
# filenm="PlotVariantsbyGene_heatmap")
#
#
#
#
#
#
#
## ----figurename="workflow", echo=FALSE, fig.cap="The workflow describes graphically step by step the procedure carried out to perform this case of study ", out.width = '99%'----
knitr::include_graphics("imgs/PlotVariantsbyGene_heatmap.png")
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
#
# ListSNPs<-MMRFVariant_GetVariantsbyGene(variant.ann, ListGene)
#
# head(ListSNPs,20)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
datatable(as.data.frame(ListSNPs),
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE)
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
# plot.impact.effect<-MMRFVariant_PlotbyEffectImpact(variant.ann,ListSNPs,topN=50,height=30,
# width=15, filenm="PlotbyEffectImpact")
#
## ----figurename="workflow", echo=FALSE, fig.cap="MMRFVariant_PlotbyEffectImpact plot ", out.width = '99%'----
knitr::include_graphics("imgs/PlotbyEffectImpact.png")
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
# impact.table<-MMRFVariant_GetImpact(variant.ann,ListSNPs)
#
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
#
#
# impact.table.sub<-dplyr::select(impact.table,dbSNP,Gene,REF,ALT,feature,Effect,
# SIFT_Impact,Polyphen_Impact,Impact)
#
# head(unique(impact.table.sub),10)
#
#
## ----figurename="ImpactTable", echo=FALSE, fig.cap="Impact table of each SNP in ListGene", out.width = '90%'----
knitr::include_graphics("imgs/ImpactTable.png")
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
#
#
# ListSNPs_NRAS<-MMRFVariant_GetVariantsbyGene(variant.ann,"NRAS")
#
#
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
datatable(as.data.frame(ListSNPs_NRAS),
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE)
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
#
#
# impact.table_NRAS<-MMRFVariant_GetImpact(variant.ann,ListSNPs_NRAS$dbSNP)
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
# impact.table_NRAS<-dplyr::select(impact.table_NRAS,dbSNP,Gene,REF,ALT,
# feature,Effect,SIFT_Impact,Polyphen_Impact,Impact)
#
# head(unique(impact.table_NRAS),10)
#
#
## ----figurename="ImpactTable_NRAS", echo=FALSE, fig.cap="Impact table of each SNP in NRAS", out.width = '90%'----
knitr::include_graphics("imgs/ImpactTable_NRAS.png")
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
#
#
#
# plot.impact.effect_NRAS<-MMRFVariant_PlotbyEffectImpact(variant.ann,ListSNPs_NRAS,topN=50,height=30,
# width=15, filenm="PlotbyEffectImpact_NRAS")
#
#
## ----figurename="ImpactTable", echo=FALSE, fig.cap="Impact table of each SNP in ListGene", out.width = '90%'----
knitr::include_graphics("imgs/PlotbyEffectImpact_NRAS.png")
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
#
# NRAS_SNPs.treat<-c("rs11554290","rs121913254","rs121913237", "rs121913255")
#
# NRAS_surv.treatment<-MMRFVariant_SurvivalKM(patient,
# trt,
# variant.ann,
# NRAS_SNPs.treat,
# FilterBy="Treatment",
# filename="KM_Plot_NRAS_treatment",
# xlim = c(100,3000),
# height=22,
# width=12,
# conf.range = FALSE,
# color = c("Dark2"))
#
#
#
#
#
#
#
#
# NRAS_surv.Effect<-MMRFVariant_SurvivalKM(patient, #no significant results are found (all pvalue>0.05)
# trt,
# variant.ann,
# ListSNPs_NRAS,
# FilterBy="Effect",
# filename="KM_Plot_NRAS_effect",
# xlim = c(100,100),
# height=22,
# width=12,
# conf.range = FALSE,
# color = c("Dark2"))
#
#
# # see (*)
#
# NRAS_SNPs.stage<-c("rs121913254")
# NRAS_surv.Stage<-MMRFVariant_SurvivalKM(patient,
# trt,
# variant.ann,
# NRAS_SNPs.stage,
# FilterBy="Stage",
# filename="KM_Plot_NRAS_stage",
# xlim = c(100,3000),
# height=22,
# width=12,
# conf.range = FALSE,
# color = c("Dark2"))
#
#
#
#
#
#
# # see (*)
# NRAS_SNPs.bestresp<-c("rs11554290","rs121913254","rs121434595", "rs121913237")
# NRAS_surv.Bestresp<-MMRFVariant_SurvivalKM(patient,
# trt,
# variant.ann,
# NRAS_SNPs.bestresp,
# FilterBy="Bestresp",
# filename="KM_Plot_NRAS_bestresp",
# xlim = c(100,3000),
# height=22,
# width=12,
# conf.range = FALSE,
# color = c("Dark2"))
#
#
#
#
#
#
#
# # see (*)
#
# NRAS_surv.Gender<-MMRFVariant_SurvivalKM(patient, #All SNPs have pvalue<=0.05
# trt,
# variant.ann,
# ListSNPs_NRAS,
# FilterBy="Gender",
# filename="KM_Plot_NRAS_gender",
# xlim = c(100,3000),
# height=22,
# width=12,
# conf.range = FALSE,
# color = c("Dark2"))
#
#
#
#
# # see (*)
#
# NRAS_surv.Biotype<-MMRFVariant_SurvivalKM(patient, #All SNPs have have only a group with respect to FilterBy parameter
# trt,
# variant.ann,
# ListSNPs_NRAS,
# FilterBy="Biotype",
# filename="KM_Plot_NRAS_biotype",
# xlim = c(100,3000),
# height=22,
# width=12,
# conf.range = FALSE,
# color = c("Dark2"))
#
#
#
# # see (*)
# NRAS_SNPs.ethnicity<-c("rs11554290","rs121913254","rs121913237")
# NRAS_surv.Ethnicity<-MMRFVariant_SurvivalKM(patient,
# trt,
# variant.ann,
# NRAS_SNPs.ethnicity,
# FilterBy="Ethnicity",
# filename="KM_Plot_NRAS_ethnicity",
# xlim = c(100,3000),
# height=22,
# width=12,
# conf.range = FALSE,
# color = c("Dark2"))
#
#
#
#
#
#
#
#
#
#
#
## ----figurename="ImpactTable", echo=FALSE, fig.cap="KM Survival curves in NRAS gene by ethnicity", out.width = '90%'----
knitr::include_graphics("imgs/KM_Surv_ethnicity.png")
## ----figurename="ImpactTable", echo=FALSE, fig.cap="KM Survival curves in NRAS gene by bestresp", out.width = '90%'----
knitr::include_graphics("imgs/KM_Surv_bestresp.png")
## ----figurename="ImpactTable", echo=FALSE, fig.cap="KM Survival curves in NRAS gene by stage", out.width = '90%'----
knitr::include_graphics("imgs/KM_Surv_stage.png")
## ----figurename="ImpactTable", echo=FALSE, fig.cap="KM Survival curves in NRAS gene by treatment", out.width = '90%'----
knitr::include_graphics("imgs/KM_Surv_treatment.png")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.