set_ANCOM | R Documentation |
Set the parameters for ANCOM differential abundance detection method.
set_ANCOM(
assay_name = "counts",
pseudo_count = FALSE,
fix_formula = NULL,
adj_formula = NULL,
rand_formula = NULL,
lme_control = lme4::lmerControl(),
contrast = NULL,
alpha = 0.05,
p_adj_method = "BH",
struc_zero = FALSE,
BC = TRUE,
n_cl = 1,
expand = TRUE
)
assay_name |
the name of the assay to extract from the
TreeSummarizedExperiment object (default |
pseudo_count |
add 1 to all counts if TRUE (default
|
fix_formula |
Used when |
adj_formula |
Used when |
rand_formula |
Optionally used when |
lme_control |
a list of control parameters for mixed model fitting.
See |
contrast |
character vector with exactly, three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level. |
alpha |
numeric. Level of significance. Default is 0.05. |
p_adj_method |
character. method to adjust p-values. Default is "holm".
Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr", "none". See |
struc_zero |
logical. Whether to detect structural zeros based on
|
BC |
boolean for ANCOM method to use. If TRUE the bias correction
(ANCOM-BC2) is computed (default |
n_cl |
numeric. The number of nodes to be forked. For details, see
|
expand |
logical, if TRUE create all combinations of input parameters
(default |
A named list containing the set of parameters for DA_ANCOM
method.
DA_ANCOM
# Set some basic combinations of parameters for ANCOM with bias correction
base_ANCOMBC <- set_ANCOM(pseudo_count = FALSE, fix_formula = "group",
contrast = c("group", "B", "A"), BC = TRUE, expand = FALSE)
many_ANCOMs <- set_ANCOM(pseudo_count = c(TRUE, FALSE),
fix_formula = "group", contrast = c("group", "B", "A"),
struc_zero = c(TRUE, FALSE), BC = c(TRUE, FALSE))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.