set_DESeq2 | R Documentation |
Set the parameters for DESeq2 differential abundance detection method.
set_DESeq2(
assay_name = "counts",
pseudo_count = FALSE,
design = NULL,
contrast = NULL,
alpha = 0.05,
norm = c("ratio", "poscounts", "iterate"),
weights_logical = FALSE,
expand = TRUE
)
assay_name |
the name of the assay to extract from the
TreeSummarizedExperiment object (default |
pseudo_count |
add 1 to all counts if TRUE (default
|
design |
character or formula to specify the model matrix. |
contrast |
character vector with exactly three elements: the name of a factor in the design formula, the name of the numerator level for the fold change, and the name of the denominator level for the fold change. |
alpha |
the significance cutoff used for optimizing the independent filtering (by default 0.05). If the adjusted p-value cutoff (FDR) will be a value other than 0.05, alpha should be set to that value. |
norm |
name of the normalization method to use in the differential
abundance analysis. Choose between the native DESeq2 normalization methods,
such as |
weights_logical |
logical vector, if TRUE a matrix of observational
weights will be used for differential abundance analysis (default
|
expand |
logical, if TRUE create all combinations of input parameters
(default |
A named list containing the set of parameters for DA_DESeq2
method.
DA_DESeq2
# Set some basic combinations of parameters for DESeq2
base_DESeq2 <- set_DESeq2(design = ~ group, contrast = c("group", "B", "A"))
# Set a specific set of normalization for DESeq2
setNorm_DESeq2 <- set_DESeq2(design = ~ group, contrast =
c("group", "B", "A"), norm = c("ratio", "poscounts"))
# Set many possible combinations of parameters for DESeq2
all_DESeq2 <- set_DESeq2(pseudo_count = c(TRUE, FALSE), design = ~ group,
contrast = c("group", "B", "A"), weights_logical = c(TRUE,FALSE))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.