View source: R/DA_metagenomeSeq.R
set_metagenomeSeq | R Documentation |
Set the parameters for metagenomeSeq differential abundance detection method.
set_metagenomeSeq(
assay_name = "counts",
pseudo_count = FALSE,
design = NULL,
coef = 2,
norm = "CSS",
model = "fitFeatureModel",
expand = TRUE
)
assay_name |
the name of the assay to extract from the
TreeSummarizedExperiment object (default |
pseudo_count |
add 1 to all counts if TRUE (default
|
design |
the model for the count distribution. Can be the variable name, or a character similar to "~ 1 + group", or a formula. |
coef |
coefficient of interest to grab log fold-changes. |
norm |
name of the normalization method to use in the differential
abundance analysis. Choose the native metagenomeSeq normalization method
|
model |
character equal to "fitFeatureModel" for differential abundance
analysis using a zero-inflated log-normal model, "fitZig" for a complex
mathematical optimization routine to estimate probabilities that a zero for
a particular feature in a sample is a technical zero or not. The latter model
relies heavily on the limma package (default
|
expand |
logical, if TRUE create all combinations of input parameters
(default |
A named list containing the set of parameters for
DA_metagenomeSeq
method.
DA_metagenomeSeq
# Set a basic combination of parameters for metagenomeSeq
base_mgs <- set_metagenomeSeq(design = ~ group, coef = 2)
# Set a specific model for metagenomeSeq
setModel_mgs <- set_metagenomeSeq(design = ~ group, coef = 2,
model = "fitZig")
# Set many possible combinations of parameters for metagenomeSeq
all_mgs <- set_metagenomeSeq(pseudo_count = c(TRUE, FALSE), design = ~ group,
coef = 2, model = c("fitFeatureModel", "fitZig"), norm = "CSS")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.