#' Compute the derived parameters correlations from a cubic splines mixed-effects model by `time_model()`.
#'
#' Based on computed area under the curves (_i.e._, `compute_aucs()`)
#' and slopes (_i.e._, `compute_slopes()`) for several intervals using
#' a model fitted by `time_model()`, compute the correlations between
#' each intervals derived parameters.
#'
#' @param fit A model object from a statistical model such as
#' from a call to `time_model()`.
#' @param method The type of model provided in `fit`,
#' _i.e._, one of `"cubic_slope"`, `"linear_splines"` or `"cubic_splines"`.
#' @param period The intervals knots on which AUCs are to be computed.
#' @param knots The knots as defined `fit` and according to `method`.
#'
#' @return A `list` object with correlations between each intervals derived parameters.
#'
#' @export
#'
#' @examples
#' data("bmigrowth")
#' ls_mod <- time_model(
#' x = "age",
#' y = "log(bmi)",
#' cov = NULL,
#' data = bmigrowth[bmigrowth[["sex"]] == 0, ],
#' method = "linear_splines"
#' )
#' compute_correlations(
#' fit = ls_mod,
#' method = "linear_splines",
#' period = c(0, 0.5, 1.5, 3.5, 6.5, 10, 12, 17)#,
#' # knots = list(
#' # "cubic_slope" = NULL,
#' # "linear_splines" = c(0.75, 5.5, 11),
#' # "cubic_splines" = c(1, 8, 12)
#' # )[[method]]
#' )
compute_correlations <- function(
fit,
method,
period = c(0, 0.5, 1.5, 3.5, 6.5, 10, 12, 17),
knots = list(
"cubic_slope" = NULL,
"linear_splines" = c(0.75, 5.5, 11),
"cubic_splines" = c(1, 8, 12)
)[[method]]
) {
lapply(
X = list(
AUC = compute_aucs(fit, method, period, knots),
SLOPE = compute_slopes(fit, method, period, knots)
),
FUN = function(data) {
data.table::as.data.table(
x = stats::cor(data[grep("^auc_|^slope_", names(data))]),
keep.rownames = "term"
)
}
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.