cv.softKv: cross-validation for softSVD

Description Usage Arguments See Also

Description

This function use k-fold cross-valiation method to optimize the sparsity of right singular values

Usage

1
2
3
4
cv.softKv(x, nf = 1, kv.opt = c(0.3, 0.5, 0.8), wv = 1, wu = 1,
  pos = FALSE, maxiter = 50, tol = sqrt(.Machine$double.eps),
  verbose = FALSE, init = c("svd", "average")[2], ncores = 1, fold = 5,
  nstart = 1, seed = NULL, loorss = FALSE)

Arguments

x

input matrix

nf

number of component

kv.opt

optional value for sparsity on right singular value

wv

weight for columns

wu

weight for rows

pos

whether retein non-negative results

maxiter

maximum number of iteration

tol

convergence tolerance

verbose

if print the progress

init

how to initialize the algorithm. if no sparsity, svd is fast.

ncores

the number of cores used, passed to mclapply

fold

fold number in cross validation

nstart

how many time the k-fold cross validation should be done

seed

set seed

loorss

if the Leave-one-out procedure should be used in matrix reconstruction

See Also

cv.softSVD


mengchen18/omic3plus documentation built on May 6, 2019, 4:59 p.m.