Description Usage Arguments Value Examples
This function use k-fold cross-valiation method to optimize the sparsity of right singular values
| 1 2 3 4 5 | 
| x | input matrix | 
| nf | number of component | 
| kv.opt | optional value for sparsity on right singular value | 
| ku.opt | optional value for sparsity on left singular value | 
| wv | weight for columns | 
| wu | weight for rows | 
| pos | whether retein non-negative results | 
| tol | convergence tolerance | 
| verbose | if print the progress | 
| ncores | the number of cores used, passed to mclapply | 
| fold | fold number in cross validation | 
| nstart | how many time the k-fold cross validation should be done | 
| seed | set seed | 
| loorss | if the Leave-one-out procedure should be used in matrix reconstruction | 
| scan | if the sum of PRESS should be plotted | 
| nsd | the n*sd for selecting k automatically | 
| maiter | maximum number of iteration | 
list consist of two matrix. - cvv - The PRESS for right singular vector, mean and sd - cvu - the PRESS for left singular vector, mean and sd - sel.v - the selected v - sel.u - the selected u
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ###
seed <- rnorm(8)
noise1 <- matrix(rnorm(8*15, sd = 0.3), 15, 8)
noise2 <- matrix(rnorm(8*20, sd = 0.3), 8, 20)
noise1[1:4, ] <- noise1[1:4, ] + rbind(seed, seed, seed, seed)
noise2[, 1:6] <- noise2[, 1:6] + seed
mat <- noise1 %*% noise2
dim(mat)
cv <- cv.softSVD(x = mat, nf = 1, kv.opt = 1:10, ku.opt = 1:8)
boxplot(cv$cvu$press)
boxplot(cv$cvv$press)
#' cv <- cv.softSVD(x = mat, nf = 1, kv.opt = 1:10, ku.opt = 1:8, scan = TRUE)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.