#' @title xgb predictions
#' @export
xgb_pre = function(variabledf, max_depth, eta, gamma, xgb_lambda, xgb_alpha, nrounds, subsample, y_varname = c("day_value", "night_value", "value_mean"), training , test , grepstring , ...) {
pre_mat = subset_grep(variabledf, grepstring )%>%dplyr::select(-y_varname)
x_train = pre_mat[training,]
y_train = variabledf[training, y_varname]
x_test = pre_mat[test, ]
y_test = variabledf[test, y_varname]
dfmatrix = as.matrix(x_train)
outputvec = variabledf[training, y_varname]
bst <- xgboost(data = dfmatrix, label = outputvec, gamma= gamma, max_depth = max_depth, lambda = xgb_lambda, alpha = xgb_alpha, eta = eta, subsample = subsample, nrounds = nrounds, verbose = 0)
print(bst)
df_test = as.matrix(x_test)
predict(bst, df_test)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.