MLE: Maximum likelihood estimators for the Principal Fitted...

Description Usage Arguments Details Value References Examples

View source: R/MLE.R

Description

Computes the ML estimators for the PFC model

Usage

1
MLE(X,Fy,d)

Arguments

X

vector of response variables in the inverse model, n x p matrix, each row is a response vector

Fy

vector of covariates in the inverse problem, vector containing functions of the response variable in the original multiple regression problem. Is a n x r matrix, each row is the corresponding response vector

d

number indicating the reduction subspace dimension

Details

We consider the Principal Fitted Components (PFC) model given by X = μ + Γβ f(y) +Δ1/2ε, where the variables are

and the unknown parameters (to be estimated) are

Both coefficient matrices Γ and β are not unique, but their product p x r matrix is unique, with rank d ≤ min(p,r). The notation refers to Cook and Forzani (2008).

Value

List with the following components

mu

MLE estimation of the term μ in the PFC model

beta

MLE estimation of the parameter β in the PFC model

gamma

MLE estimation of the parameter Γ in the PFC model

delta

MLE estimation of the covariance matrix Δ in the PFC model

References

Cook, R. D. and Forzani, L. (2008). Principal Fitted components for dimension reduction in regression. Statistical Science, 23(4):485-501.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
p=10
n=200
mutrue=rep(0,p)
gamatrue=as.matrix(c(1,rep(0,p-1)))
betatrue=t(as.matrix(c(1,1)))

data_sim=generate(p,n,mutrue,gamatrue,betatrue,sigmatrue=1)
Fy=data_sim$Fy
X=data_sim$X
MLE(X,Fy,d=1)

meszre/tauPFC documentation built on Feb. 28, 2020, 8:21 a.m.