tauestimate: Tau estimate for the Principal Fitted Components Model (PFC)

Description Usage Arguments Details Value References Examples

View source: R/tauestimate.R

Description

Computes the tau estimators for the PFC model

Usage

1
tauestimate(X, Fy, d, aux, inic)

Arguments

X

vector of response variables in the inverse model, n x p matrix, each row is a response vector

Fy

vector of covariates in the inverse problem, vector containing functions of the response variable in the original multiple regression problem. Is a n x r matrix, each row is the corresponding response vector

d

number indicating the reduction subspace dimension

aux

list containing the constants for the tau-scale

inic

list containing initial estimators for the coefficient matrix and the covariance matrix

Details

We consider the Principal Fitted Components (PFC) model given by X = μ + Γβ f(y) +Δ1/2ε where the variables are

and the unknown parameters (to be estimated) are

Both coefficient matrices Γ and β are not unique, but their product p x r matrix is unique, with rank d ≤ min(p,r). The notation refers to Cook and Forzani (2008).

Value

List with the following components

mu

tau-estimator for the term μ in the PFC model

beta

tau-estimator for the parameter β in the PFC model

gamma

tau-estimator for the parameter Γ in the PFC model

delta

tau-estimator for the covariance matrix Δ in the PFC model

References

Bergesio, A., Szretter Noste, M. E. and Yohai, V. J. (2020). A robust proposal of estimation for the sufficient dimension reduction problem

Cook, R. D. and Forzani, L. (2008). Principal Fitted components for dimension reduction in regression. Statistical Science, 23(4):485-501.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
p=10
n=200
mutrue=rep(0,p)
gamatrue=as.matrix(c(1,rep(0,p-1)))
betatrue=t(as.matrix(c(1,1)))

# to generate a dataset of n observations following the
# above PFC model, r=2
data_sim=generate(p,n,mutrue,gamatrue,betatrue,sigmatrue=1)
Fy=data_sim$Fy
X=data_sim$X

aux=kappa_and_c(p,efficiency=.9)
inic=initial(X,Fy,aux,efficiency=0.85)
tauestimate(X,Fy,d=1,aux,inic)

meszre/tauPFC documentation built on Feb. 28, 2020, 8:21 a.m.