Description Usage Arguments Value Examples
To calculate the GRADE table.
1 2 3 4 5 6 7 8 9 10 11 12 | GRADE_table(
study.CM,
bmt,
nmt,
rob,
ind,
report.bias,
effect.size = c("diff", "ratio"),
clinical.effect.size,
model = c("Bayes", "Freq"),
imput.global.p = FALSE
)
|
study.CM |
contribution matrix from sutdyCM_matrix |
bmt |
result from bayesian net-meta model_gemtc |
nmt |
result from frequentist net-meta model_netmmeta |
rob |
risk of bias |
ind |
indirectness |
report.bias |
reported bias |
effect.size |
two types: "diff": difference; "ratio": ratio |
clinical.effect.size |
clinical effect size |
model |
"Bayes": Bayesian net-meta model or |
imput.global.p |
whether to impute p value of inconsistency |
GRADE table matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | LDT1 <- read.csv(system.file("extdata", "HR_SH_D.csv", package = "net.meta"))
trt1 <- read.table(system.file("extdata", "HR_SH_D.txt", package = "net.meta"),
header=TRUE,quote = '"', stringsAsFactors=FALSE)
trt1$description <- factor(trt1$description, trt1$description)
LDT1$study <- factor(LDT1$study, unique(LDT1$study))
set.seed(1)
bmt1 <- model_gemtc(
long.data=LDT1,
id.treatments=trt1,
reference="A",
outcome="HR",
mtc.n.adapt = 500, mtc.n.iter = 1000, mtc.thin = 20)
nmt1 <- model_netmeta(long.data = LDT1,
treatment=LDT1$treatment,
id.treatments = trt1,
reference = "A",
outcome = "HR")
name1 <- NULL
for(i in 1:(length(trt1$id)-1)){
name1 <- c(name1, paste0(trt1$id[i], ":", trt1$id[-(1:i)]))
}
study.CM1 <- studyCM_matrix(name1, nmt1)
study.assess1 <- read.csv(system.file("extdata", "HR_SH_A.csv", package = "net.meta"))
RB.comp1 <- rep(0, nrow(study.CM1)) #1 Yes, 0 no
RESULT.F1 <- GRADE_table(
study.CM1,
bmt=bmt1,
nmt=nmt1,
rob=study.assess1$ROB,
ind=study.assess1$IND,
report.bias=RB.comp1,
effect.size = "ratio",
clinical.effect.size=1.25,
model="Freq")
RESULT.B1 <- GRADE_table(
study.CM1,
bmt1,
nmt1,
rob=study.assess1$ROB, ## define Rob per study
ind=study.assess1$IND, ## define Indirectness per study
report.bias=RB.comp1,
effect.size = "ratio",
clinical.effect.size=1.25,
model="Bayes")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.